针对二维局部均值分解(bidimensional local mean decomposition,BLMD)中影响算法速度的两个主要因素:自适应搜索窗口和迭代终止条件,提出了优化方法,并在其基础上提出了一种边缘检测算法。该算法采用Delaunay三角剖分得到局部极值点的...针对二维局部均值分解(bidimensional local mean decomposition,BLMD)中影响算法速度的两个主要因素:自适应搜索窗口和迭代终止条件,提出了优化方法,并在其基础上提出了一种边缘检测算法。该算法采用Delaunay三角剖分得到局部极值点的理想规则化的三角网格,通过网格划分确定相邻极值点及滑动平均窗口的大小,并提出了一种新的BLMD算法迭代收敛条件,通过对人工合成图像以及自然图像的实验,证实了该优化算法与原算法结果非常接近甚至更优,且大幅度提高了计算速度。对BLMD得到的最高频分量进行直方图均衡,将其结果二值化,通过设定阈值剔除其中不连续的细小边缘,通过形态学将其骨骼化,得到最终提取的边缘。与几种典型边缘检测算子的比较实验表明,新算法可以较好地检测出图像边缘,相对于其他边缘检测算子,对于图像中的纹理等细节边缘有着更佳的检测效果;并且得益于BLMD图像多尺度分析的优势,较好地避免了因光照明暗等低频因素产生的假边缘,提取出的边缘更符合视觉上的主观检测。展开更多
为了获取图像在不同尺度下的特征信息,用于融合高空间分辨率的全色图像(Panchromatic Image,PAN)和低空间分辨率的多光谱图像(Multispectral Image,MS),本文采用了基于二维局部均值分解(Bi-dimensional Local Mean Decomposition,BLMD)...为了获取图像在不同尺度下的特征信息,用于融合高空间分辨率的全色图像(Panchromatic Image,PAN)和低空间分辨率的多光谱图像(Multispectral Image,MS),本文采用了基于二维局部均值分解(Bi-dimensional Local Mean Decomposition,BLMD)的图像融合方法。首先,将PAN图像和MS图像分别进行BLMD分解;其次,将PAN图像分解后的高频信息与MS图像分解后的低频信息进行组合形成新的波段信息;最后,通过逆BLMD变换完成图像的融合。本文使用GF-1号和ZY-3号两个数据集来验证融合方法的有效性,并将融合结果与传统融合方法所得结果进行定性分析和定量评价。评价结果表明,基于BLMD方法能够有效的注入PAN图像空间信息,同时又能更高程度地保留MS图像的光谱特征。展开更多
针对传统图像融合方法容易导致融合图像出现细节不明显和目标信息不完整的问题,本文提出一种基于二维局部均值分解(Bidimensional Local Mean Decomposition,BLMD)和非下采样方向滤波器组(Nonsubsampled Directional Filter Banks,NSDFB...针对传统图像融合方法容易导致融合图像出现细节不明显和目标信息不完整的问题,本文提出一种基于二维局部均值分解(Bidimensional Local Mean Decomposition,BLMD)和非下采样方向滤波器组(Nonsubsampled Directional Filter Banks,NSDFB)算法的红外与可见光图像融合方法(基于方向滤波的二维局部均值分解法,BidimensionalLocalMeanDecompositionbasedDirectionalFilteringAnalysis,BLMDDFA)。首先,计算两幅原始图片的熵值,同时提取熵值较大的图片的残余分量,该残余分量与另一张原始图片有着较强的相关性。然后,通过BLMD和NSDFB算法将残余分量和熵值较小的原始图片分解成低频子带和一系列不同尺度的高频方向子带,并使用不同的融合规则分别对低频子带和高频子带进行融合。最后,通过相应的逆变换运算获得融合图像。实验结果表明,本文方法的融合性能在对比度、细节信息展示和目标突出方面均高于经典的融合算法,在信息熵、标准差、空间频率和平均梯度方面较Laplacian方法中各指标分别提高了5.6%、28.9%、37.4%和47.6%,信噪比较Laplacian方法降低了8.5%。展开更多
文摘针对二维局部均值分解(bidimensional local mean decomposition,BLMD)中影响算法速度的两个主要因素:自适应搜索窗口和迭代终止条件,提出了优化方法,并在其基础上提出了一种边缘检测算法。该算法采用Delaunay三角剖分得到局部极值点的理想规则化的三角网格,通过网格划分确定相邻极值点及滑动平均窗口的大小,并提出了一种新的BLMD算法迭代收敛条件,通过对人工合成图像以及自然图像的实验,证实了该优化算法与原算法结果非常接近甚至更优,且大幅度提高了计算速度。对BLMD得到的最高频分量进行直方图均衡,将其结果二值化,通过设定阈值剔除其中不连续的细小边缘,通过形态学将其骨骼化,得到最终提取的边缘。与几种典型边缘检测算子的比较实验表明,新算法可以较好地检测出图像边缘,相对于其他边缘检测算子,对于图像中的纹理等细节边缘有着更佳的检测效果;并且得益于BLMD图像多尺度分析的优势,较好地避免了因光照明暗等低频因素产生的假边缘,提取出的边缘更符合视觉上的主观检测。
文摘为了获取图像在不同尺度下的特征信息,用于融合高空间分辨率的全色图像(Panchromatic Image,PAN)和低空间分辨率的多光谱图像(Multispectral Image,MS),本文采用了基于二维局部均值分解(Bi-dimensional Local Mean Decomposition,BLMD)的图像融合方法。首先,将PAN图像和MS图像分别进行BLMD分解;其次,将PAN图像分解后的高频信息与MS图像分解后的低频信息进行组合形成新的波段信息;最后,通过逆BLMD变换完成图像的融合。本文使用GF-1号和ZY-3号两个数据集来验证融合方法的有效性,并将融合结果与传统融合方法所得结果进行定性分析和定量评价。评价结果表明,基于BLMD方法能够有效的注入PAN图像空间信息,同时又能更高程度地保留MS图像的光谱特征。
文摘针对传统图像融合方法容易导致融合图像出现细节不明显和目标信息不完整的问题,本文提出一种基于二维局部均值分解(Bidimensional Local Mean Decomposition,BLMD)和非下采样方向滤波器组(Nonsubsampled Directional Filter Banks,NSDFB)算法的红外与可见光图像融合方法(基于方向滤波的二维局部均值分解法,BidimensionalLocalMeanDecompositionbasedDirectionalFilteringAnalysis,BLMDDFA)。首先,计算两幅原始图片的熵值,同时提取熵值较大的图片的残余分量,该残余分量与另一张原始图片有着较强的相关性。然后,通过BLMD和NSDFB算法将残余分量和熵值较小的原始图片分解成低频子带和一系列不同尺度的高频方向子带,并使用不同的融合规则分别对低频子带和高频子带进行融合。最后,通过相应的逆变换运算获得融合图像。实验结果表明,本文方法的融合性能在对比度、细节信息展示和目标突出方面均高于经典的融合算法,在信息熵、标准差、空间频率和平均梯度方面较Laplacian方法中各指标分别提高了5.6%、28.9%、37.4%和47.6%,信噪比较Laplacian方法降低了8.5%。