期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于抽取技术的二维密集频率估计方法 被引量:4
1
作者 李靖 王树勋 汪飞 《电子学报》 EI CAS CSCD 北大核心 2005年第9期1670-1674,共5页
本文研究了有色噪声背景下的密集频率估计问题,提出了一种采用二维抽取技术估计密集频率的新方法.利用时域抽取增加频率间隔的能力,基于二维谐波信号模型,本方法对二维密集频率进行了有效的分离,并利用改进的二维矩阵束方法对分离后的... 本文研究了有色噪声背景下的密集频率估计问题,提出了一种采用二维抽取技术估计密集频率的新方法.利用时域抽取增加频率间隔的能力,基于二维谐波信号模型,本方法对二维密集频率进行了有效的分离,并利用改进的二维矩阵束方法对分离后的二维密集频率进行了准确的估计.本文所提出的方法简单易行,解决了现有二维频率估计方法对密集频率估计失效的问题.仿真结果验证了本方法的有效性. 展开更多
关键词 密集频率 有色噪声 高阶统计量 二维抽取 过采样
下载PDF
A novel fusion method of improved adaptive LTP and two-directional two-dimensional PCA for face feature extraction
2
作者 罗元 王薄宇 +1 位作者 张毅 赵立明 《Optoelectronics Letters》 EI 2018年第2期143-147,共5页
In this paper, under different illuminations and random noises, focusing on the local texture feature's defects of a face image that cannot be completely described because the threshold of local ternary pattern(LT... In this paper, under different illuminations and random noises, focusing on the local texture feature's defects of a face image that cannot be completely described because the threshold of local ternary pattern(LTP) cannot be calculated adaptively, a local three-value model of improved adaptive local ternary pattern(IALTP) is proposed. Firstly, the difference function between the center pixel and the neighborhood pixel weight is established to obtain the statistical characteristics of the central pixel and the neighborhood pixel. Secondly, the adaptively gradient descent iterative function is established to calculate the difference coefficient which is defined to be the threshold of the IALTP operator. Finally, the mean and standard deviation of the pixel weight of the local region are used as the coding mode of IALTP. In order to reflect the overall properties of the face and reduce the dimension of features, the two-directional two-dimensional PCA((2D)~2 PCA) is adopted. The IALTP is used to extract local texture features of eyes and mouth area. After combining the global features and local features, the fusion features(IALTP+) are obtained. The experimental results on the Extended Yale B and AR standard face databases indicate that under different illuminations and random noises, the algorithm proposed in this paper is more robust than others, and the feature's dimension is smaller. The shortest running time reaches 0.329 6 s, and the highest recognition rate reaches 97.39%. 展开更多
关键词 PCA LTP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部