A Si doped AlGaN/GaN HEMT structure with high Al content (x=43%) in the barrier layer is grown on sapphire substrate by RF-MBE.The structural and electrical properties of the heterostructure are investigated by the tr...A Si doped AlGaN/GaN HEMT structure with high Al content (x=43%) in the barrier layer is grown on sapphire substrate by RF-MBE.The structural and electrical properties of the heterostructure are investigated by the triple axis X-ray diffraction and Van der Pauw-Hall measurement,respectively.The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.The high 2DEG mobility in excess of 1260cm2/(V·s) is achieved with an electron density of 1.429×10 13cm -2 at 297K,corresponding to a sheet-density-mobility product of 1.8×10 16V -1·s -1.Devices based on the structure are fabricated and characterized.Better DC characteristics,maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer.The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.展开更多
Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent...Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.展开更多
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of vir...From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical(except the second virial coefficient, where the sign is different)when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1(J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose(Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose(Fermi) gas.展开更多
We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes ...We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes(BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.展开更多
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner struct...The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.展开更多
Several recently developed analytical techniques, based on high-end mass spectrometry and chromatography, for dealing with challenges in petroleum characterization are reported. Folded flight path time-of-flight mass ...Several recently developed analytical techniques, based on high-end mass spectrometry and chromatography, for dealing with challenges in petroleum characterization are reported. Folded flight path time-of-flight mass spectrometry provides resolving power up to 100000, enabling accurate mass measurement for molecular formula determination with high confidence. Atmos- pheric pressure chemical ionization (APCI) can be used in both gas chromatography (GC, as APGC) and liquid chromatog- raphy (LC) for analyzing non-polar hydrocarbons as well as polar compounds. The improvement in chromatography facilitates the mass spectrometric analysis through online coupling. Comprehensive two-dimensional gas chromatography (GCxGC) re- solves overlapping components, rendering accurate identification and quantitation. Supercritical fluid extraction has been de- veloped as an alternative method to replace traditional solvent extraction methods and eliminate the use of large volumes of solvents that can be harmful to health and environment. Supercritical fluid chromatography (SFC) has been developed as a convergence of GC and LC chromatographic techniques. The use of SFC for heavy oils and residua has been demonstrated. Prospective developments in the use of mass spectrometric and chromatographic methods for petroleum characterization are also described.展开更多
文摘A Si doped AlGaN/GaN HEMT structure with high Al content (x=43%) in the barrier layer is grown on sapphire substrate by RF-MBE.The structural and electrical properties of the heterostructure are investigated by the triple axis X-ray diffraction and Van der Pauw-Hall measurement,respectively.The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.The high 2DEG mobility in excess of 1260cm2/(V·s) is achieved with an electron density of 1.429×10 13cm -2 at 297K,corresponding to a sheet-density-mobility product of 1.8×10 16V -1·s -1.Devices based on the structure are fabricated and characterized.Better DC characteristics,maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer.The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.
基金This work was financially supported by National University of Singapore, Ministry of Education of Singapore, Ministry of Defence of Singapore, National Research Foundation of Singapore and National Natural Science Foundation of China (Nos. 21233006 and 21473164).
文摘Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.
文摘From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical(except the second virial coefficient, where the sign is different)when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1(J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose(Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose(Fermi) gas.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB922000)the National Natural Science Foundation of China(Grant Nos.11274009,11374283,11434011,11522436 and11522545)+1 种基金and the Research Funds of Renmin University of China(Grant Nos.10XNL016 and 16XNLQ03)support from the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences(Grant No.XDB01030200)
文摘We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes(BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
基金supported by Advanced Research Center Program(NRF-2013R1A5A1073861)through the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)contracted through Advanced Space Propulsion Research Center at Seoul National University
文摘The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
文摘Several recently developed analytical techniques, based on high-end mass spectrometry and chromatography, for dealing with challenges in petroleum characterization are reported. Folded flight path time-of-flight mass spectrometry provides resolving power up to 100000, enabling accurate mass measurement for molecular formula determination with high confidence. Atmos- pheric pressure chemical ionization (APCI) can be used in both gas chromatography (GC, as APGC) and liquid chromatog- raphy (LC) for analyzing non-polar hydrocarbons as well as polar compounds. The improvement in chromatography facilitates the mass spectrometric analysis through online coupling. Comprehensive two-dimensional gas chromatography (GCxGC) re- solves overlapping components, rendering accurate identification and quantitation. Supercritical fluid extraction has been de- veloped as an alternative method to replace traditional solvent extraction methods and eliminate the use of large volumes of solvents that can be harmful to health and environment. Supercritical fluid chromatography (SFC) has been developed as a convergence of GC and LC chromatographic techniques. The use of SFC for heavy oils and residua has been demonstrated. Prospective developments in the use of mass spectrometric and chromatographic methods for petroleum characterization are also described.