An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degra...An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.展开更多
Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.