In this paper, we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using ...In this paper, we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach. In comparison to a dipping anisotropy case, the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media, which cause a non-symmetric linear system of equations for finite element modeling. The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes, which allows for arbitrary model geometries including bathymetry and dipping layers. Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.展开更多
基金funded by the National Natural Science Foundation of China (NO 41130420)
文摘In this paper, we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach. In comparison to a dipping anisotropy case, the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media, which cause a non-symmetric linear system of equations for finite element modeling. The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes, which allows for arbitrary model geometries including bathymetry and dipping layers. Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.