期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于子模式双向二维线性判别分析的人脸识别 被引量:4
1
作者 董晓庆 陈洪财 《液晶与显示》 CAS CSCD 北大核心 2015年第6期1016-1023,共8页
针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并... 针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并保持子块间的空间关系,然后对各个子训练样本集从行方向和列方向同时利用2DLDA进行特征抽取,最后把各个子特征矩阵拼接成一对应原始图像的特征矩阵,并采用最近邻分类器进行分类识别。在ORL及Yale人脸库上的试验结果表明,Sp-(2D)2 LDA有效降低了鉴别特征的维数,减少了表情和光照变化的影响,获得了较好的识别性能。 展开更多
关键词 人脸识别 特征抽取 双向二维线性判别分析 子模式双向二维线性判别分析
下载PDF
基于三维荧光光谱结合二维线性判别分析的油类识别方法的研究 被引量:7
2
作者 孔德明 董瑞 +2 位作者 崔耀耀 王书涛 史慧超 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第8期2505-2510,共6页
油类污染严重威胁到自然环境及人类健康。因此,识别和处理油类污染非常重要。由于三维荧光光谱能够表征石油的荧光特征,故一般利用三维荧光光谱法检测溶液中存在的油类污染物。但油类的三维荧光光谱数据维度较高且直接分析的难度较大,... 油类污染严重威胁到自然环境及人类健康。因此,识别和处理油类污染非常重要。由于三维荧光光谱能够表征石油的荧光特征,故一般利用三维荧光光谱法检测溶液中存在的油类污染物。但油类的三维荧光光谱数据维度较高且直接分析的难度较大,因此可以利用数据降维方法提取原始油类样本的光谱特征,并利用所得到的光谱特征对样本进行识别。基于此,利用二维线性判别分析(2D-LDA)对油类样本进行特征提取,研究提取的不同样本光谱特征的差别,将得到的光谱特征作为K最近邻(KNN)分类的输入,得到相应的分类结果。首先,分别配制四种不同的油类(柴油、汽油、航空煤油、润滑油)样本各20个,共计得到80个油类样本;然后,利用FS920光谱仪采集所有油类样本的三维荧光光谱数据;其次,对采集到的光谱数据进行预处理,去除光谱中散射的干扰并标准化;最后,利用2D-LDA算法对样本进行特征提取,利用KNN算法进行分类,并将其分类结果与经主成分分析(PCA)进行特征提取后的分类结果比较。研究结果表明,2D-LDA提取特征的分类效果优于PCA。利用2D-LDA分别提取发射和激发特征得到测试集识别的准确率相同且都为95%,而将发射和激发光谱特征的分类距离相结合并重新进行分类的准确率为100%。表明两类光谱相对于三维荧光光谱具有互补性,将发射和激发光谱特征相结合能够更好地对样本进行分类。而利用PCA对测试集识别的准确率仅为85%,表明2D-LDA对三维荧光光谱数据的特征提取效果更好。与PCA相比,2D-LDA通过类内散度和类间散度最大化投影向量来提取样本的特征,使得同类样本尽可能接近,不同样本尽可能分离。因此,2D-LDA具有使降维后的数据更容易被区分的特点,故其鲁棒性好。该研究为油类的降维识别提供了一种参考。 展开更多
关键词 荧光光谱 二维线性判别分析 主成分分析 K最近邻
下载PDF
改进的双边二维线性判别分析的手背静脉识别 被引量:4
3
作者 王贺 邓茂云 +3 位作者 姜守坤 李明明 宗宇轩 刘富 《吉林大学学报(信息科学版)》 CAS 2017年第1期32-36,共5页
针对双边二维线性判别分析(B2D-LDA:Bilateral Two-Dimensional Linear Discriminant Analysis)方法中多类类别均值和总体均值接近时难以分类的问题,提出了一种改进的B2D-LDA(MB2D-LDA:Modified B2D-LDA)方法,并将其运用到手背静脉特征... 针对双边二维线性判别分析(B2D-LDA:Bilateral Two-Dimensional Linear Discriminant Analysis)方法中多类类别均值和总体均值接近时难以分类的问题,提出了一种改进的B2D-LDA(MB2D-LDA:Modified B2D-LDA)方法,并将其运用到手背静脉特征提取中。重新定义了类间离散度矩阵,融入了每两类类间的距离,当类别均值与总体均值接近时,则用该类和其他各类类间距离组成离散度矩阵。采用基于欧氏距离的最近邻分类器进行匹配识别。结果表明,在不增加识别时间的情况下,MB2D-LDA平均识别率比B2D-LDA高2%,证明了该算法的有效性。 展开更多
关键词 手背静脉识别 特征提取 双边二维线性判别分析 最近邻分类器
下载PDF
基于加权双向二维线性判别特征的焊点检测算法 被引量:1
4
作者 邝泳聪 谢宏威 +1 位作者 欧阳高飞 张宪民 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期35-40,共6页
为克服现有自动光学检测(AOI)算法的缺陷,针对AOI的特点,对传统的双向二维线性判别方法进行改进,提出一种基于加权双向二维线性判别方法的焊点检测算法.在计算协方差矩阵时,对不同的类别以及类内不同的样本进行加权,从而提取更有判别力... 为克服现有自动光学检测(AOI)算法的缺陷,针对AOI的特点,对传统的双向二维线性判别方法进行改进,提出一种基于加权双向二维线性判别方法的焊点检测算法.在计算协方差矩阵时,对不同的类别以及类内不同的样本进行加权,从而提取更有判别力的特征.将改进后的算法应用于焊点检测,可实现对不同批次用料的自动分类.文中提出的算法检测速度可以满足实际需要,且与现有AOI系统中常用的图像对比算法和图像分析法相比,可以显著降低误报率. 展开更多
关键词 自动光学检测 双向二维线性判别分析 特征提取 焊点检测
下载PDF
基于子模式行列方向二维线性判别分析特征融合的特征提取 被引量:1
5
作者 董晓庆 陈洪财 《计算机应用》 CSCD 北大核心 2014年第12期3593-3598,共6页
针对人脸识别中表情和光照变化引起的面部变化、灰度不均匀等识别问题,提出一种基于子模式行列方向二维线性判别分析(Sp-RC2DLDA)的特征提取方法。该方法通过对原图像进行子模式分块处理,能有效提取图像的局部特征,减少表情、光照变化... 针对人脸识别中表情和光照变化引起的面部变化、灰度不均匀等识别问题,提出一种基于子模式行列方向二维线性判别分析(Sp-RC2DLDA)的特征提取方法。该方法通过对原图像进行子模式分块处理,能有效提取图像的局部特征,减少表情、光照变化的影响,通过把相同位置的子图像组成子样本集,合理利用了子块间的空间关系,进一步提高了识别率;同时,对各个子样本集分别利用行方向二维线性判别分析(2DLDA)和列方向扩展2DLDA(E2DLDA)进行特征抽取,得到互补的行、列方向子图像特征,并分别把子图像特征组合成原图像的特征矩阵,然后利用一种特征融合方法对行、列方向特征矩阵进行有效融合,对互补的特征空间进行融合有效地改善了识别性能;最后采用最近邻分类器进行人脸识别实验。在Yale及ORL人脸库上的实验结果表明,Sp-RC2DLDA有效地减少了表情和光照变化的影响,具有较好的鲁棒性。 展开更多
关键词 人脸识别 特征抽取 扩展二维线性判别分析 子模式 特征融合
下载PDF
基于改进的双向二维线性判别分析的人脸识别
6
作者 叶延亮 徐正光 《计算机工程与应用》 CSCD 北大核心 2008年第31期188-190,共3页
针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投... 针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投影矩阵投影,提取出特征系数。实验证明在相同识别率下,用此方法提取的特征系数维数明显少于其它二维线性判别分析方法。在选择合适的特征向量的情况下,此方法的识别率要好于其它二维线性判别分析方法。 展开更多
关键词 主元分析法 双向线性鉴别分析方法 改进的双向二维线性判别分析方法 压缩 投影矩阵
下载PDF
融合双向主成分分析的二维线性判别方法 被引量:10
7
作者 许爽 索继东 丁纪峰 《大连海事大学学报》 CAS CSCD 北大核心 2011年第3期73-76,共4页
通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别... 通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别,得到最佳投影矩阵;最后,提取判别特征完成特征识别.实验结果表明,该方法提取速度快、识别率高、鲁棒性好. 展开更多
关键词 二维线性判别(2DFLD) 主成分分析(2DPCA) 掌纹识别 特征提取
原文传递
基于双向二维直接线性判别分析的人脸表情识别 被引量:3
8
作者 郑秋梅 吕兴会 时公喜 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期179-182,共4页
提出基于双向二维直接线性判别分析的人脸表情识别新算法。新算法从水平和垂直两个方向对图像矩阵执行直接线性判别分析,从二维图像中提取图像协方差矩阵,降低特征维数,减少表示图像时所需要的系数及其存储空间。另外,不使用奇异值分解... 提出基于双向二维直接线性判别分析的人脸表情识别新算法。新算法从水平和垂直两个方向对图像矩阵执行直接线性判别分析,从二维图像中提取图像协方差矩阵,降低特征维数,减少表示图像时所需要的系数及其存储空间。另外,不使用奇异值分解方法,便可得到图像协方差矩阵的特征向量,能够精确地估计图像协方差矩阵。在JAFFE人脸表情数据库中的试验结果表明,所提算法具有较高的识别率。 展开更多
关键词 计算机应用 图像识别 人脸表情识别 直接线性判别分析 双向直接线性判别分析
下载PDF
二维Fisher线性判别中子模式性能的一种评价方法
9
作者 苑玮琦 郭伟芳 《计算机应用研究》 CSCD 北大核心 2009年第11期4345-4347,共3页
针对二维Fisher线性判别(2DFLD)方法中传统子模式选取方法计算量大、十分耗时的问题,结合影响2DFLD方法识别结果的两个主要因素——样本在投影空间的离散程度和子模式之间的相似度,提出了一种子模式性能的评价方法。首先设计子模式的构... 针对二维Fisher线性判别(2DFLD)方法中传统子模式选取方法计算量大、十分耗时的问题,结合影响2DFLD方法识别结果的两个主要因素——样本在投影空间的离散程度和子模式之间的相似度,提出了一种子模式性能的评价方法。首先设计子模式的构成方式;接着依据该评价方法计算各个子模式的性能指标;最后选出较优的子模式。在人耳图库、ORL人脸图库及虹膜图库上的实验结果表明,该评价方法能有效地选取较优子模式,并能够将计算时间缩短为常规子模式选择方法的近1/4,是一种有效的子模式性能评价方法。 展开更多
关键词 Fisher线性判别 子模式 相似度 离散程度 评价方法
下载PDF
二维线性大间距判别分析及其在步态识别中的应用
10
作者 张鹏 付希凯 +1 位作者 葛国栋 贲晛烨 《应用科技》 CAS 2014年第1期11-15,共5页
提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplac... 提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplacian类间散度与Laplacian类内散度之差,能克服Fisher准则带来的小样本问题;另一方面,采用了具有监督信息的判别分析,大大地提高了识别率。为了验证所提出的算法对特征提取的有效性,选择最近邻分类器进行特征分类,最后通过在CASIA(B)步态库上实验。实验结果表明,文中提出的算法具有更高的识别率和识别速度。 展开更多
关键词 特征提取 线性大间距判别分析 拉普拉斯矩阵 步态识别
下载PDF
基于核方法的二维线性判决分析的人脸识别算法 被引量:4
11
作者 张朝柱 左国辉 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期1167-1170,共4页
针对基于二维线性判决分析的人脸识别算法中缺少非线性判决信息的问题,提出了一种改进的基于核方法的二维线性判决分析的人脸识别算法。实验结果表明,改进后的算法相对原算法具有更好的识别效果。在此基础上研究了在使用多项式核函数时... 针对基于二维线性判决分析的人脸识别算法中缺少非线性判决信息的问题,提出了一种改进的基于核方法的二维线性判决分析的人脸识别算法。实验结果表明,改进后的算法相对原算法具有更好的识别效果。在此基础上研究了在使用多项式核函数时本文算法的性能,得出了在选用低次数多项式核函数时识别率较高的结论。 展开更多
关键词 通信技术 人脸识别 二维线性判别 核方法 多项式核函数
下载PDF
基于三维荧光光谱结合2D-LDA的食用油掺假鉴别研究
12
作者 姜海洋 崔耀耀 +1 位作者 贾彦国 谌志鹏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3179-3185,共7页
食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序。研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义。以食用油中的香油为例开展食用油掺假鉴别方法研究。通过芝麻香精与玉米油、... 食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序。研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义。以食用油中的香油为例开展食用油掺假鉴别方法研究。通过芝麻香精与玉米油、大豆油以及菜籽油三种食用油配制了3类掺假香油;使用FLS920稳态荧光光谱仪采集了这3类掺假香油以及不同品牌香油共计45个实验样本的三维荧光光谱数据;基于2D-LDA方法提取了实验样本的二维特征,并以此为依据采用最近邻分类原理实现了掺假食用油的准确鉴别。将所述方法与平行因子结合非线性判别分析(PARAFAC-QDA)、多维偏最小二乘——判别分析(NPLS-DA)两种方法进行了对比。结果表明,2D-LDA方法能够有效提取掺假香油的二维特征。这些特征能够使不同类别的实验样本在投影子空间中实现最大程度分离;同时可使相同类别的实验样本在子空间中尽可能地紧密聚集,进而使得样本在低维子空间中具有更好的可分性,从而获得了100%的鉴别准确率。而PARAFAC-QDA和NPLS-DA两种方法仅分别获得了85%和95%的鉴别准确率。2D-LDA方法相比于这两种方法在食用油掺假鉴别特别是现场快速检测的实际应用中更具优势和潜力,其鉴别过程与结果更加简捷和精确。研究为现场食品安全监管提供了一种高效可行的新方案。 展开更多
关键词 食用油 荧光光谱 二维线性判别分析(2D-LDA) 掺假鉴别
下载PDF
二维PCA非参数子空间分析的人脸识别算法 被引量:4
13
作者 王美 梁久祯 《计算机工程》 CAS CSCD 北大核心 2011年第24期187-189,192,共4页
提出一种结合二维PCA(2DPCA)的二维非参数子空间分析(2DNSA)人脸识别算法。利用2DPCA对原始图像矩阵进行特征降维,以降维后的特征为训练样本,进行二维非参数判别分析,并综合考虑类边界样本对分类的影响,采用2DNSA实现更合理的特征提取... 提出一种结合二维PCA(2DPCA)的二维非参数子空间分析(2DNSA)人脸识别算法。利用2DPCA对原始图像矩阵进行特征降维,以降维后的特征为训练样本,进行二维非参数判别分析,并综合考虑类边界样本对分类的影响,采用2DNSA实现更合理的特征提取。基于Yale、LARGE人脸数据库的实验结果表明,与(2D)2PCA、2DPCA、(2D)2LDA、2DLDA、2DPCA+2DLDA、2DNSA算法相比,该算法性能更优。 展开更多
关键词 人脸识别 特征提取 非参数子空间分析 主成分分析 二维线性判别分析
下载PDF
基于二维Fisher线性判别的人脸耳组合识别 被引量:7
14
作者 桑海峰 金云平 苑玮琦 《光电子.激光》 EI CAS CSCD 北大核心 2010年第4期588-592,共5页
针对人脸易受到年龄、表情等影响,提出了脸和耳相结合的组合识别方法。利用二维Fisher线性判别(2DFLD)方法分别进行了脸、耳图像层和特征层的组合识别。在北京科技大学人耳库和ORL人脸库上进行实验,结果表明,图像层组合和特征层组合的... 针对人脸易受到年龄、表情等影响,提出了脸和耳相结合的组合识别方法。利用二维Fisher线性判别(2DFLD)方法分别进行了脸、耳图像层和特征层的组合识别。在北京科技大学人耳库和ORL人脸库上进行实验,结果表明,图像层组合和特征层组合的识别率分别为97.5%、95.0%,分别比人脸识别提高了12.5%和10.0%,比人耳识别提高了5.0%和2.5%;与同样应用于组合识别的主成分分析(PCA)、二维PCA(2DPCA)比较,也取得了较好识别效果。这说明,多生物特征组合识别是一种有效的识别方法。 展开更多
关键词 Fisher线性判别(2DFLD) 人脸识别 人耳识别 多生物特征组合识别
原文传递
基于行列特征复融合的人脸识别 被引量:4
15
作者 胡晓 俞王新 +1 位作者 余群 姚菁 《计算机工程》 CAS CSCD 北大核心 2010年第11期176-177,182,共3页
针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T... 针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T和AR人脸数据库对该算法进行性能测试,结果表明该算法具有较高的识别率。 展开更多
关键词 人脸识别 二维线性判别分析 小样本容量问题 特征融合
下载PDF
一种基于双向模块2DLDA的人脸识别方法 被引量:6
16
作者 王磊 武敬飞 贾莉 《电子测量与仪器学报》 CSCD 2013年第8期760-765,共6页
针对人脸识别中的特征抽取问题,对原始的二维线性判别分析(2DLDA)算法进行改进,提出了一种基于双向模块2DLDA的人脸识别算法。首先对原始图像进行模块化处理,然后分别从行和列2个方向上实施2DLDA变换,最后通过可调幂因子最近邻分类器进... 针对人脸识别中的特征抽取问题,对原始的二维线性判别分析(2DLDA)算法进行改进,提出了一种基于双向模块2DLDA的人脸识别算法。首先对原始图像进行模块化处理,然后分别从行和列2个方向上实施2DLDA变换,最后通过可调幂因子最近邻分类器进行特征分类,完成人脸识别。该方法不仅有效的利用人脸的局部特征信息、降低光照对人脸的影响,而且显著降低了人脸图像特征的维数。在ORL人脸库以及Yale人脸库中的实验结果表明,提出的人脸识别方法具有较好的人脸识别性能。 展开更多
关键词 二维线性判别分析 矩阵模块化 双向投影 特征抽取 人脸识别
下载PDF
一种基于广义2DLDA算法在人脸识别的应用 被引量:4
17
作者 宋家东 周明全 +2 位作者 卢金环 刘一丹 李晓娟 《小型微型计算机系统》 CSCD 北大核心 2015年第4期856-861,共6页
提出一种基于广义的2DLDA算法,简称:G2DLDA.首先,由于2DLDA算法提取的特征向量矩阵S-1wSb通常不是标准正交特征向量矩阵,因此该方法会严重影响特征提取的质量.本文根据Sw矩阵是对称正定的,即:具有Sw=S1/2w×S1/2w性质,将2DLDA算法... 提出一种基于广义的2DLDA算法,简称:G2DLDA.首先,由于2DLDA算法提取的特征向量矩阵S-1wSb通常不是标准正交特征向量矩阵,因此该方法会严重影响特征提取的质量.本文根据Sw矩阵是对称正定的,即:具有Sw=S1/2w×S1/2w性质,将2DLDA算法的特征向量矩阵转化成基于标准正交特征向量矩阵,即:S-1/2wSbS-1/2w.其次,G2DLDA算法与2DLDA一样不会产生小样本事件,因为方程式S-1/2wSbS-1/2wv=λv的右端为单位矩阵,是满秩的.最后,G2DLDA算法采用基于Cosine-范数度量方式进行分类,实验证明该度量方式优于其他度量方式,如:欧氏距离度量方式以及F-范数度量方式.在实验阶段,本文采用Yale、ORL和JAFFE三个数据库对该算法进行测试与分析,实验结果证明该算法具有较好的鲁棒性,同时能够获得较高的识别率. 展开更多
关键词 广义二维线性判别分析 Cosine-范数 小样本事件 度灾难
下载PDF
融合2DDCT、2DPCA和2DLDA的人脸识别方法 被引量:5
18
作者 廖正湘 陈元枝 李强 《计算机应用与软件》 CSCD 北大核心 2012年第9期237-239,288,共4页
二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分... 二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分别对单一的方法与相融合的方法进行识别比较研究。实验结果表明,提出的方法不仅提高了识别率,而且减少了训练与分类时间。 展开更多
关键词 主分量分析 二维线性判别分析 特征提取 离散余弦变换
下载PDF
一种基于重采样双向2DLDA融合的人脸识别算法 被引量:2
19
作者 李文辉 姜园媛 +1 位作者 王莹 傅博 《电子学报》 EI CAS CSCD 北大核心 2011年第11期2526-2533,共8页
针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协... 针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协方差信息进行识别,E2DLDA利用水平方向上的类内和类间协方差信息进行识别,本文中从理论上证明了这两个方向上的判别信息具有一定的互补性,为融合两个方向的判别信息进行分类器的设计,改善分类器的识别性能提供了理论基础.同时为RB2DLDA算法提出一种自适应的降维参数设定方法,经过在AR和CAS-PEAL-R1人脸库上的实验表明,RB2DLDA算法具有较高的识别率和鲁棒性. 展开更多
关键词 人脸识别 重采样 双向二维线性判别分析
下载PDF
基于QR分解与2DLDA的单样本人脸识别 被引量:3
20
作者 覃磊 李德华 周康 《微电子学与计算机》 CSCD 北大核心 2015年第2期65-68,共4页
提出了一种新的基于矩阵的QR分解与2DLDA的单样本人脸识别算法(QR decomposition+2DLDA).利用矩阵的QR分解,将单样本人脸图像进行QR分解后提取有效的部分信息构成虚拟图像,结合原训练图像生成新的训练样本集,应用2DLDA进行特征提取和识... 提出了一种新的基于矩阵的QR分解与2DLDA的单样本人脸识别算法(QR decomposition+2DLDA).利用矩阵的QR分解,将单样本人脸图像进行QR分解后提取有效的部分信息构成虚拟图像,结合原训练图像生成新的训练样本集,应用2DLDA进行特征提取和识别.在ORL人脸数据库上对算法进行了实验,实验结果表明此算法的识别效果不仅优于PCA、SPCA、(PC)2 A、E(PC)2 A算法,而且对于光照、表情等因素具有良好的鲁棒性. 展开更多
关键词 虚拟图像 单样本 二维线性判别分析 QR分解
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部