Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D...Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.展开更多
SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to t...SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to the thickness of the SiO_2 layer (hsiO_2), which can not be determined precisely after the deposit of 2-D flakes. Here, we demonstrated a simple, fast and nondestructive tech- nique to precisely determine hsiO_2 of SiO_2 films on Si substrate only by optical contrast measurement with a typical micro-Raman confocal system. Because of its small lateral resolution down to the micrometer scale, this tech- nique can be used to access hsiO_2 on SiO_2/Si substrate that has been partially covered by 2-D crystal flakes, and then further determine the layer number of the 2-D crystal flakes. This technique can be extended to other dielectric multilayer substrates and the layer-number determination of 2-D crystal flakes on those substrates.展开更多
In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by mon...In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by monitoring the changes of sound pressure level(SPL).As such,the optimized cavitation generator with the best cavitation capability under the same ambient condition was determined.Further,BN and MoS 2,two kinds of layered materials,were exfoliated into individual flakes in aqueous solutions by this jet cavitation device.By investigating the morphology of these exfoliated flakes via scanning electron microscopy and transmission electron microscope,it was found that these pristine materials were mostly exfoliated into two-dimensional nanosheets,among which even monolayers were generally presented.This exfoliation process happened mainly due to the cavitation-induced intensive tensile stress acting on the layered materials.As graphene has been produced by this device successfully,it is anticipated that this jet cavitation device is suitable for producing other various two-dimensional nanosheets.展开更多
基金supported by the National Natural Science Foundation of China (21571101 and 51322202)the Natural Science Foundation of Jiangsu Province in China (BK20161543 and BK20130927)+1 种基金the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201)Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430016)
文摘Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.
基金supported by the National Natural Science Foundation of China(11225421,11474277 and11434010)
文摘SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to the thickness of the SiO_2 layer (hsiO_2), which can not be determined precisely after the deposit of 2-D flakes. Here, we demonstrated a simple, fast and nondestructive tech- nique to precisely determine hsiO_2 of SiO_2 films on Si substrate only by optical contrast measurement with a typical micro-Raman confocal system. Because of its small lateral resolution down to the micrometer scale, this tech- nique can be used to access hsiO_2 on SiO_2/Si substrate that has been partially covered by 2-D crystal flakes, and then further determine the layer number of the 2-D crystal flakes. This technique can be extended to other dielectric multilayer substrates and the layer-number determination of 2-D crystal flakes on those substrates.
基金supported by the Special Financial Support of Joint Building Project of the Beijing Education Committee
文摘In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by monitoring the changes of sound pressure level(SPL).As such,the optimized cavitation generator with the best cavitation capability under the same ambient condition was determined.Further,BN and MoS 2,two kinds of layered materials,were exfoliated into individual flakes in aqueous solutions by this jet cavitation device.By investigating the morphology of these exfoliated flakes via scanning electron microscopy and transmission electron microscope,it was found that these pristine materials were mostly exfoliated into two-dimensional nanosheets,among which even monolayers were generally presented.This exfoliation process happened mainly due to the cavitation-induced intensive tensile stress acting on the layered materials.As graphene has been produced by this device successfully,it is anticipated that this jet cavitation device is suitable for producing other various two-dimensional nanosheets.