简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键...简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键挑战。详细综述了基于TMD中的激子对调控光致发光方法的最新进展,包括化学掺杂、衬底工程、抑制激子-激子湮灭(EEA)等方法,最后总结和展望了TMD材料目前研究现状存在的主要问题以及未来的需求与挑战。展开更多
作为现代信息社会的物理基石,以硅基材料为核心的集成电路极大推动了人类现代文明的进程.但是,随着晶体管特征尺寸微缩逐渐接近物理极限,传统硅基材料出现了电学性能衰退、异质界面失稳等挑战,导致集成电路数据处理能力提升难、功耗急...作为现代信息社会的物理基石,以硅基材料为核心的集成电路极大推动了人类现代文明的进程.但是,随着晶体管特征尺寸微缩逐渐接近物理极限,传统硅基材料出现了电学性能衰退、异质界面失稳等挑战,导致集成电路数据处理能力提升难、功耗急剧增加等问题产生.超薄二维过渡金属硫族化合物(transition metal dichalcogenides,TMDCs)具有表面平整无悬挂键、电输运性能优异、静电控制力强、化学性质稳定等优势,可有效解决上述问题,被认为是后摩尔时代集成电路的最具潜力候选材料之一.目前,二维TMDCs集成电路研究在多个关键领域均取得了突破性成果,但距离产业化应用仍需要克服一些挑战.本文着重介绍了二维TMDCs材料与电子器件在集成电路应用的各方面优势,系统阐明了二维TMDCs集成电路在材料控制生长、范德华界面优化以及器件设计构筑等方面的关键科学问题,提出了相应解决办法和应对措施,分析了二维TMDCs集成电路产业化进程中的综合性挑战,明确了“与硅基技术兼容”二维TMDCs集成电路发展路线的优势、可行性与突破方向.展开更多
二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)是继石墨烯之后的新型范德瓦耳斯材料,由于其天然的二维特性以及强自旋轨道耦合作用(spin-orbital coupling, SOC),导致诸如金属-绝缘体转变、电荷密度波(charge densi...二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)是继石墨烯之后的新型范德瓦耳斯材料,由于其天然的二维特性以及强自旋轨道耦合作用(spin-orbital coupling, SOC),导致诸如金属-绝缘体转变、电荷密度波(charge density wave, CDW)、能谷电子学、非常规超导电性等新颖物理性质的出现,使得这类材料成为研究低维量子物理的又一理想平台.其中能谷电子学与拓扑超导已经成为近年来凝聚态物理前沿研究的热点方向.本文在综述TMDCs材料的结构与基本物理性质的基础上,重点介绍了最近发展的用于生长原子层厚度的TMDCs材料的熔盐辅助化学气相沉积方法、在Se掺杂的MoSexTe2-x薄膜中实现的Td相到1T′相再到2H相的结构相变与超导增强现象,以及在少层Td-MoTe2中发现的非对称性SOC作用引起的类伊辛超导现象.最后,展望了TMDCs材料的潜在应用与可能存在的拓扑超导.展开更多
文摘简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键挑战。详细综述了基于TMD中的激子对调控光致发光方法的最新进展,包括化学掺杂、衬底工程、抑制激子-激子湮灭(EEA)等方法,最后总结和展望了TMD材料目前研究现状存在的主要问题以及未来的需求与挑战。
文摘作为现代信息社会的物理基石,以硅基材料为核心的集成电路极大推动了人类现代文明的进程.但是,随着晶体管特征尺寸微缩逐渐接近物理极限,传统硅基材料出现了电学性能衰退、异质界面失稳等挑战,导致集成电路数据处理能力提升难、功耗急剧增加等问题产生.超薄二维过渡金属硫族化合物(transition metal dichalcogenides,TMDCs)具有表面平整无悬挂键、电输运性能优异、静电控制力强、化学性质稳定等优势,可有效解决上述问题,被认为是后摩尔时代集成电路的最具潜力候选材料之一.目前,二维TMDCs集成电路研究在多个关键领域均取得了突破性成果,但距离产业化应用仍需要克服一些挑战.本文着重介绍了二维TMDCs材料与电子器件在集成电路应用的各方面优势,系统阐明了二维TMDCs集成电路在材料控制生长、范德华界面优化以及器件设计构筑等方面的关键科学问题,提出了相应解决办法和应对措施,分析了二维TMDCs集成电路产业化进程中的综合性挑战,明确了“与硅基技术兼容”二维TMDCs集成电路发展路线的优势、可行性与突破方向.
文摘二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)是继石墨烯之后的新型范德瓦耳斯材料,由于其天然的二维特性以及强自旋轨道耦合作用(spin-orbital coupling, SOC),导致诸如金属-绝缘体转变、电荷密度波(charge density wave, CDW)、能谷电子学、非常规超导电性等新颖物理性质的出现,使得这类材料成为研究低维量子物理的又一理想平台.其中能谷电子学与拓扑超导已经成为近年来凝聚态物理前沿研究的热点方向.本文在综述TMDCs材料的结构与基本物理性质的基础上,重点介绍了最近发展的用于生长原子层厚度的TMDCs材料的熔盐辅助化学气相沉积方法、在Se掺杂的MoSexTe2-x薄膜中实现的Td相到1T′相再到2H相的结构相变与超导增强现象,以及在少层Td-MoTe2中发现的非对称性SOC作用引起的类伊辛超导现象.最后,展望了TMDCs材料的潜在应用与可能存在的拓扑超导.