numerical method for 2D-unsteady fluid flow is proposed in this paper,which is based on the common lagrange quadrilateral grid (primary grid) andreconstructed a series of secondary grid. The computational scheme on tw...numerical method for 2D-unsteady fluid flow is proposed in this paper,which is based on the common lagrange quadrilateral grid (primary grid) andreconstructed a series of secondary grid. The computational scheme on two-seriesgrid can resist effectively the intersection of grid.展开更多
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool t...Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.展开更多
This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was use...This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.展开更多
A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of t...A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of the flow separation at nozzle walls.Two types of flow separations such as FSS and RSS shock structure occur.A two-dimension numerical simulation has been carried out over an axisymmetric TOC nozzle to validate present results and investigate oscillatory flow characteristics for start-up processes.Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme.Governing equations are solved by coupled implicit scheme.Reynolds Stress turbulence model is selected.Present computed pressure at the nozzle wall closely matched with experiment data.A hysteresis phenomenon has been observed between these two shock structures.The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure.Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio.Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.展开更多
文摘numerical method for 2D-unsteady fluid flow is proposed in this paper,which is based on the common lagrange quadrilateral grid (primary grid) andreconstructed a series of secondary grid. The computational scheme on two-seriesgrid can resist effectively the intersection of grid.
基金the financial support provided by the National Natural Science Foundation of China (51279190 and 51311140259)National High Technology Research and Development Program of China (863 Project,2012AA052601)+2 种基金Shandong Natural Science Funds for Distinguished Young Scholar (JQ201314)Qingdao Municipal Science & Technology Program (13-4-1-38hy and 14-9-1-5-hy)the Program of Introducing Talents of Discipline to Universities (111 Project,B14028)
文摘Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.
文摘This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.
基金supporting this research work under the Korea-Japan Basic Scientific Cooperation Program,No.F01-2009-000-10040-0
文摘A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of the flow separation at nozzle walls.Two types of flow separations such as FSS and RSS shock structure occur.A two-dimension numerical simulation has been carried out over an axisymmetric TOC nozzle to validate present results and investigate oscillatory flow characteristics for start-up processes.Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme.Governing equations are solved by coupled implicit scheme.Reynolds Stress turbulence model is selected.Present computed pressure at the nozzle wall closely matched with experiment data.A hysteresis phenomenon has been observed between these two shock structures.The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure.Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio.Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.