In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By ...In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.展开更多
We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on ...We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.展开更多
文摘In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.
基金Supported by the Higher School Visiting Scholar Development Project under Grant No.FX2013103the Research Fund under Grant No.ZCI2XJY003+2 种基金 Research Fund for the Doctoral Program under Grant No.Z301B13519 of the Zhejiang University of Media and CommunicationsZhejiang Province Science Foundation for Youths under Grant No.LQ12F05005National Natural Science Foundation of China under Grant No.11374254
文摘We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.