为了降低人脸图像的Gabor特征的维数,提高计算效率,提出了一种多通道Gabor小波与二维Fisher线性判别(Two-dimensional Fisher linear discriminant,2DFLD)相结合的人脸识别方法.在每个通道用2DFLD进行特征提取和分类,然后进行决策融合...为了降低人脸图像的Gabor特征的维数,提高计算效率,提出了一种多通道Gabor小波与二维Fisher线性判别(Two-dimensional Fisher linear discriminant,2DFLD)相结合的人脸识别方法.在每个通道用2DFLD进行特征提取和分类,然后进行决策融合以便决定测试人脸的类别.在CAS-PEAL-R1与ORL人脸数据库上的试验结果表明,所提出的方法具有较好的识别性能,尤其在CAS-PEAL-R1人脸数据库的表情子库上,所提出的方法的最佳识别率能达到99%以上.展开更多
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
文摘为了降低人脸图像的Gabor特征的维数,提高计算效率,提出了一种多通道Gabor小波与二维Fisher线性判别(Two-dimensional Fisher linear discriminant,2DFLD)相结合的人脸识别方法.在每个通道用2DFLD进行特征提取和分类,然后进行决策融合以便决定测试人脸的类别.在CAS-PEAL-R1与ORL人脸数据库上的试验结果表明,所提出的方法具有较好的识别性能,尤其在CAS-PEAL-R1人脸数据库的表情子库上,所提出的方法的最佳识别率能达到99%以上.
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。