Aim To investigate the chemical constituents of Piper wallichii. Methods Five compounds were isolated by silica gel column chromatography and Sephadex LH-20 gel column chromatography, and the structures of compounds w...Aim To investigate the chemical constituents of Piper wallichii. Methods Five compounds were isolated by silica gel column chromatography and Sephadex LH-20 gel column chromatography, and the structures of compounds were identified by spectral analysis. Result Five compounds were identified as piperlonguminine (trans, trans) (1), 4-hydroxy-3,5-dimethoxy-benzoic acid (2), galgravin (3), β-sitosterol (4), and daucosterol (5). Conclusion Five compounds were isolated from Piper wallichii for the first time, and compounds 1 -3 were isolated from this genus far the first time.展开更多
Aim To synthesize naturally occurring (-) methyl2,2-dimethyl-3-hydroxychromanyl-6-formate. Methods Sharpless' asymmetric dihydroxylation wasemployed to construct the 3-hydroxychroman. Results First asymmetric synt...Aim To synthesize naturally occurring (-) methyl2,2-dimethyl-3-hydroxychromanyl-6-formate. Methods Sharpless' asymmetric dihydroxylation wasemployed to construct the 3-hydroxychroman. Results First asymmetric synthesis of (-) methyl 2,2-dimethyl-3-hydroxychromanyl-6-formate (1) was accomplished starting from methyl 4-hydroxy-benzoate(2), and the absolute configuration was established. Conclusion A useful method for constructingchiral 3-hydroxychroman by employing Sharpless' asymmetric dihydroxylation is achieved.展开更多
Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this specie...Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.展开更多
Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 ...Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 + )·(C 7 H 5 O 4 )] (1), [(C 3 H 5 N 2 + )·(C 7 H 4 O 3 Cl )] C 7 H 5 O 3 Cl (2), and [(C 3 H 5 N 2 + ) (C 12 H 7 O 4 )] (3). Proton transfer occurs from the COOH of carboxylic acid to nitrogen of imidazole in all complexes (1-3), leading to the hydrogen bond N-H…O in all structures. To our knowledge, the recognition pattern between the carboxylic acid group and imidazole (acid-imidazole synthon) is less well-studied so far. The cooperation among COOH, COO and imidazolium cation functional groups for the observed hydrogen bond synthons is examined in the three structures. Generally, the strong N-H…O and O-H…O hydrogen bonds define supramolecular architecture and connectivity within chains, while weaker C-H…O hydrogen bonds play the dominant role in controlling the interactions between layers in these novel organic salts. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.展开更多
The results of crystallographic analyses on 1:1 and 1:4 well-defined co-crystals formed between glycine anhydride and each of 4-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid are described. Neutral molecules are ...The results of crystallographic analyses on 1:1 and 1:4 well-defined co-crystals formed between glycine anhydride and each of 4-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid are described. Neutral molecules are connected via heteromeric O-H.-.O and N-H…O contacts leading to different packing arrangements of supramolecular chains. On the basis of the molec- ular structures of glycine anhydride and carboxylic acid guests, the hydrogen bonds are arranged to give centrosymmetric synthons V and VII which are noteworthy for their robustness. Hydrogen-bond interactions between glycine anhydride and aromatic acid provide sufficient driving force to direct molecular recognition and crystal packing. Utilization of the orientation of functional groups of the building blocks, the acidity, and weak interactions provides a route for the creation of novel supra- molecular architectures in the crystal lattice. Both two co-crystals contain the expected hydrogen-bonded motifs, and there has been no proton transfer from either of the two carboxylic acids to the aza compound moiety. This demonstrates that glycine anhydride is very capable of affecting the construction of binary co-crystals in a predictable and rationale manner. It is noted that synthons Ⅷ and IX are fairly large, but the real challenge in crystal engineering is to find a big enough synthon that occurs often enough. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.展开更多
Four hydroxybenzoic acid building blocks, m-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxyterephthalic acid, and 5-hydroxyisophthalic acid, have been synthesized as robust cocrystallizing agents and emp...Four hydroxybenzoic acid building blocks, m-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxyterephthalic acid, and 5-hydroxyisophthalic acid, have been synthesized as robust cocrystallizing agents and employed in reactions with piperazine, including [(C4H12N2 2+).(C7H5O3-)2] (l), [(CaH12N2 2+).(C7H5O4-)2] (2), [(C4H12N2 2+).(C8H5O6 2- )] (3), and [(C4H12N2 2+)1/2. (C8H5O5)] . 2H2O (4). Hydrogen-bonded directed assemblies of four salts were validated by single-crystal X-ray diffraction analysis. In compounds 1-4, hydroxybenzoic acids are all deprotonated and piperazine molecules are all protonated to form piperazine dications and keep the chair conformation. Thermal stability of these compounds has been investigated.展开更多
文摘Aim To investigate the chemical constituents of Piper wallichii. Methods Five compounds were isolated by silica gel column chromatography and Sephadex LH-20 gel column chromatography, and the structures of compounds were identified by spectral analysis. Result Five compounds were identified as piperlonguminine (trans, trans) (1), 4-hydroxy-3,5-dimethoxy-benzoic acid (2), galgravin (3), β-sitosterol (4), and daucosterol (5). Conclusion Five compounds were isolated from Piper wallichii for the first time, and compounds 1 -3 were isolated from this genus far the first time.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant NO.20272020).
文摘Aim To synthesize naturally occurring (-) methyl2,2-dimethyl-3-hydroxychromanyl-6-formate. Methods Sharpless' asymmetric dihydroxylation wasemployed to construct the 3-hydroxychroman. Results First asymmetric synthesis of (-) methyl 2,2-dimethyl-3-hydroxychromanyl-6-formate (1) was accomplished starting from methyl 4-hydroxy-benzoate(2), and the absolute configuration was established. Conclusion A useful method for constructingchiral 3-hydroxychroman by employing Sharpless' asymmetric dihydroxylation is achieved.
基金Supported by the National Natural Science Foundation (No. 30530080)the Ministry of Science and Technology of China (Nos. 2007AA09Z402, 2007AA09Z403)the Department of Science and Technology of Shandong Province (No. 2006GG2205023)
文摘Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.
基金supported by the National Natural Science Foundation of China (20701023, 20971076)the Natural Science Foundation of Shandong Province, China (BS2010NJ004,2009ZRB019KH)
文摘Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 + )·(C 7 H 5 O 4 )] (1), [(C 3 H 5 N 2 + )·(C 7 H 4 O 3 Cl )] C 7 H 5 O 3 Cl (2), and [(C 3 H 5 N 2 + ) (C 12 H 7 O 4 )] (3). Proton transfer occurs from the COOH of carboxylic acid to nitrogen of imidazole in all complexes (1-3), leading to the hydrogen bond N-H…O in all structures. To our knowledge, the recognition pattern between the carboxylic acid group and imidazole (acid-imidazole synthon) is less well-studied so far. The cooperation among COOH, COO and imidazolium cation functional groups for the observed hydrogen bond synthons is examined in the three structures. Generally, the strong N-H…O and O-H…O hydrogen bonds define supramolecular architecture and connectivity within chains, while weaker C-H…O hydrogen bonds play the dominant role in controlling the interactions between layers in these novel organic salts. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.
基金financially supported by the National Natural Science Foundation of China (20701023, 51102138)the Natural Science Foundation of Shandong Province, China (BS2010NJ004,2009ZRB019KH)
文摘The results of crystallographic analyses on 1:1 and 1:4 well-defined co-crystals formed between glycine anhydride and each of 4-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid are described. Neutral molecules are connected via heteromeric O-H.-.O and N-H…O contacts leading to different packing arrangements of supramolecular chains. On the basis of the molec- ular structures of glycine anhydride and carboxylic acid guests, the hydrogen bonds are arranged to give centrosymmetric synthons V and VII which are noteworthy for their robustness. Hydrogen-bond interactions between glycine anhydride and aromatic acid provide sufficient driving force to direct molecular recognition and crystal packing. Utilization of the orientation of functional groups of the building blocks, the acidity, and weak interactions provides a route for the creation of novel supra- molecular architectures in the crystal lattice. Both two co-crystals contain the expected hydrogen-bonded motifs, and there has been no proton transfer from either of the two carboxylic acids to the aza compound moiety. This demonstrates that glycine anhydride is very capable of affecting the construction of binary co-crystals in a predictable and rationale manner. It is noted that synthons Ⅷ and IX are fairly large, but the real challenge in crystal engineering is to find a big enough synthon that occurs often enough. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.
基金supported by the National Natural Science Foundation of China (20701023,20971076)the Natural Science Foundation of Shandong Province,China (BS2010NJ004,2009ZRB019KH)
文摘Four hydroxybenzoic acid building blocks, m-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxyterephthalic acid, and 5-hydroxyisophthalic acid, have been synthesized as robust cocrystallizing agents and employed in reactions with piperazine, including [(C4H12N2 2+).(C7H5O3-)2] (l), [(CaH12N2 2+).(C7H5O4-)2] (2), [(C4H12N2 2+).(C8H5O6 2- )] (3), and [(C4H12N2 2+)1/2. (C8H5O5)] . 2H2O (4). Hydrogen-bonded directed assemblies of four salts were validated by single-crystal X-ray diffraction analysis. In compounds 1-4, hydroxybenzoic acids are all deprotonated and piperazine molecules are all protonated to form piperazine dications and keep the chair conformation. Thermal stability of these compounds has been investigated.