期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于序列深度学习的Ⅲ型分泌效应子预测
1
作者 唐贤俊 王顺芳 《计算机工程与设计》 北大核心 2022年第8期2197-2203,共7页
为理解Ⅲ型分泌系统(T3SS)对致病机理的重要性,针对其表现出的高度序列多样性,提出基于序列深度学习的Ⅲ型分泌效应子预测方法。利用两级卷积神经网络实现对蛋白质序列功能域的检测,用双向长短时记忆神经网络识别长期依赖关系,用二进制... 为理解Ⅲ型分泌系统(T3SS)对致病机理的重要性,针对其表现出的高度序列多样性,提出基于序列深度学习的Ⅲ型分泌效应子预测方法。利用两级卷积神经网络实现对蛋白质序列功能域的检测,用双向长短时记忆神经网络识别长期依赖关系,用二进制交叉熵评价神经网络质量。在数据集上将五折交叉验证的结果与其它算法进行比较,验证了该方法能够有效提高预测Ⅲ型分泌效应子的准确率。 展开更多
关键词 分泌效应子预测 序列特征 两级卷积神经网络 二进制交叉熵 五折交叉验证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部