In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA ha...In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA has high device density, high operating speed, and extremely low powex consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.展开更多
文摘In the field ofnanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (~MOS) circuit. QCA has high device density, high operating speed, and extremely low powex consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.