本文研究的图 G 为简单的无向的二部图.所用术语和符号除说明外皆同[1].c(G)表示 G 的最长圈的长.以(A_1,A_2)为二分类的二部图记为 G(A_1,A_2).(?)=min{d(v)|v∈V(G)}.已有结果:定理1.设 G(A_1,A_2)为二连通的二部图,则 c(G)≥2min{|A_...本文研究的图 G 为简单的无向的二部图.所用术语和符号除说明外皆同[1].c(G)表示 G 的最长圈的长.以(A_1,A_2)为二分类的二部图记为 G(A_1,A_2).(?)=min{d(v)|v∈V(G)}.已有结果:定理1.设 G(A_1,A_2)为二连通的二部图,则 c(G)≥2min{|A_1|,|A_2|,2δ—2}.定理2.设 G(A_1,A_2)为二连通的二部图,且(?)_i=min{d(v)|v∈A_i}(i=1,展开更多
Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ...Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs which are constructed from primitive groups of degree 9p.展开更多
文摘本文研究的图 G 为简单的无向的二部图.所用术语和符号除说明外皆同[1].c(G)表示 G 的最长圈的长.以(A_1,A_2)为二分类的二部图记为 G(A_1,A_2).(?)=min{d(v)|v∈V(G)}.已有结果:定理1.设 G(A_1,A_2)为二连通的二部图,则 c(G)≥2min{|A_1|,|A_2|,2δ—2}.定理2.设 G(A_1,A_2)为二连通的二部图,且(?)_i=min{d(v)|v∈A_i}(i=1,
基金supported by National Natural Science Foundation of China(Grant Nos.11271267 and 11371204)
文摘Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs which are constructed from primitive groups of degree 9p.