针对电离层电子总含量(total electron content,TEC)时间序列高噪声、非线性和非平稳的动态序列的特点,基于反向传播神经网络(back propagation neural network,BPNN)模型对欧洲定轨中心(Centre for Orbit Determination in Europe,CODE...针对电离层电子总含量(total electron content,TEC)时间序列高噪声、非线性和非平稳的动态序列的特点,基于反向传播神经网络(back propagation neural network,BPNN)模型对欧洲定轨中心(Centre for Orbit Determination in Europe,CODE)提供的电离层格网(global ionosphere maps,GIM)数据产品中低纬度、中纬度、高经纬格网点TEC数据和对应的时间点、经纬度、太阳射电通量F10.7数据、赤道地磁活动指数Dst、全球地磁活动指数Kp数据进行样本训练并进行电离层预报.结果表明:基于BPNN模型能够较好地预报低纬度、中纬度和高纬度电离层TEC数值,平均相对精度分别到达了90.5%、88.7%、85.35%,残差均值分别为1.505 TECU、1.595 TECU、1.885 TECU,平均均方根误差(root mean square error,RMSE)值分别为1.94 TECU、2.13 TECU、3.08 TECU.展开更多