最大功率点跟踪(maximum power point tracking,MPPT)是光伏系统保持高效运行的有效方法。在光伏阵列发生局部遮挡时,其功率-电压曲线会出现多峰现象,传统粒子群算法(particle swarm optimization,PSO)在此情况下进行MPPT容易陷入局部...最大功率点跟踪(maximum power point tracking,MPPT)是光伏系统保持高效运行的有效方法。在光伏阵列发生局部遮挡时,其功率-电压曲线会出现多峰现象,传统粒子群算法(particle swarm optimization,PSO)在此情况下进行MPPT容易陷入局部最优问题,导致收敛精度降低。为解决以上问题,提出了一种二阶振荡粒子群算法应用于最大功率点跟踪,并针对多峰函数特点进行优化。在对粒子种群初始化时采用分散定位逼近极值的方式增加粒子群的全局搜索能力,提出有效的终止策略防止系统反复波动。在MATLAB/Simulink平台进行仿真对比分析的结果表明:改进算法可有效提升MPPT控制的效率和动态品质。展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
为实现水培营养液水质参数的高效、精确控制,减少设备供能产生的碳排量,构建了一个基于粒子群优化(Particle Swarm Optimization,PSO)算法和最大功率点跟踪(Maximum Power Point Tracking,MPPT)算法的水培智能控制系统。用PSO算法优化...为实现水培营养液水质参数的高效、精确控制,减少设备供能产生的碳排量,构建了一个基于粒子群优化(Particle Swarm Optimization,PSO)算法和最大功率点跟踪(Maximum Power Point Tracking,MPPT)算法的水培智能控制系统。用PSO算法优化模糊控制器的量化、比例因子,加入Smith预估器补偿反馈时延,对pH为4.5、电导率(Electrical Conductivity,EC)为0 mS/cm的营养液进行精确调控。经过优化,分别在44 s和43 s后达到预设值,并能维持稳定状态。建立光伏发电模块,引入MPPT算法,缩短跟踪时长至0.04 s。结果表明,该系统能提高营养液水质参数的调节精度,缩短控制时长,增强水培环境的稳定性;同时,能提升发电效率,实现节能减排。展开更多
文摘最大功率点跟踪(maximum power point tracking,MPPT)是光伏系统保持高效运行的有效方法。在光伏阵列发生局部遮挡时,其功率-电压曲线会出现多峰现象,传统粒子群算法(particle swarm optimization,PSO)在此情况下进行MPPT容易陷入局部最优问题,导致收敛精度降低。为解决以上问题,提出了一种二阶振荡粒子群算法应用于最大功率点跟踪,并针对多峰函数特点进行优化。在对粒子种群初始化时采用分散定位逼近极值的方式增加粒子群的全局搜索能力,提出有效的终止策略防止系统反复波动。在MATLAB/Simulink平台进行仿真对比分析的结果表明:改进算法可有效提升MPPT控制的效率和动态品质。
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。