我们用En表示n维欧几里得空间,且 integral from n=En(f(x)dx)=integral from n=En(f(x<sub>1</sub>,x<sub>2</sub>,…,x<sub>n</sub>)dx<sub>i</sub>dx<sub>2</sub>...我们用En表示n维欧几里得空间,且 integral from n=En(f(x)dx)=integral from n=En(f(x<sub>1</sub>,x<sub>2</sub>,…,x<sub>n</sub>)dx<sub>i</sub>dx<sub>2</sub>…dx<sub>n</sub> 性质1 对于E<sub>2</sub>中任何连续可微的函数u(x<sub>1</sub>,x<sub>2</sub>),其支集包含在某球:|x-x<sub>0</sub>|【R内,不等式 integral from n=E<sub>2</sub>(u<sup>2</sup>(x)/(|x-x<sub>0</sub>|<sup>2</sup>ln<sup>2</sup>|(x-x<sub>0</sub>)/R|)dx≤4integral from n=E<sub>2</sub>(sum from i=1 to 2u<sup>2</sup>x<sub>i</sub>dx成立,x<sub>0</sub>=(x<sub>01</sub>,x<sub>02</sub>)展开更多
文摘我们用En表示n维欧几里得空间,且 integral from n=En(f(x)dx)=integral from n=En(f(x<sub>1</sub>,x<sub>2</sub>,…,x<sub>n</sub>)dx<sub>i</sub>dx<sub>2</sub>…dx<sub>n</sub> 性质1 对于E<sub>2</sub>中任何连续可微的函数u(x<sub>1</sub>,x<sub>2</sub>),其支集包含在某球:|x-x<sub>0</sub>|【R内,不等式 integral from n=E<sub>2</sub>(u<sup>2</sup>(x)/(|x-x<sub>0</sub>|<sup>2</sup>ln<sup>2</sup>|(x-x<sub>0</sub>)/R|)dx≤4integral from n=E<sub>2</sub>(sum from i=1 to 2u<sup>2</sup>x<sub>i</sub>dx成立,x<sub>0</sub>=(x<sub>01</sub>,x<sub>02</sub>)