The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho...The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.展开更多
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op...When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.展开更多
Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and ...Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in zinc electrolytes at the same time using the second derivative waves of single sweep oscillopolarography.Factors affecting the derivative waves of the ions were researched in a medium of dimethylglyoxime(DMG)-sodium citrate-sodium tetraborate.The results indicated that the interferences of a high concentration of Zn^2+and most other coexisting ions on the determination can be eliminated;when the Cu^2+,Cd^2+,Ni^2+and Co^2+are in the ranges of1×10^-7-3×10^-4,6×10^-7-2×10^-4,2×10^-8-1×10^-5and1×10^-8-3×10^-5mol/L,respectively,the relationships between the peak currents of the second derivative waves and the concentrations are linear;the detection limits to determine the Cu^2+,Cd^2+,Ni^2+and Co^2+are8×10^-8,2×10^-7,6×10^-9and4×10^-9mol/L,respectively.Without any sample pretreatment,the method was used to directly determine the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in actual zinc electrolytes with satisfactory results.The method is simple,sensitive and rapid.展开更多
Among all environmental forces acting on ocean structures and marine vessels, those resulting from wave impacts are likely to yield the highest loads. Being highly nonlinear, transient and complex, a theoretical analy...Among all environmental forces acting on ocean structures and marine vessels, those resulting from wave impacts are likely to yield the highest loads. Being highly nonlinear, transient and complex, a theoretical analysis of their impact would be impossible without numerical simulations. In this paper, a pressure-split two-stage numerical algorithm is proposed based on Volume Of Fluid (VOF) methodology. The algorithm is characterized by introduction of two pressures at each half and full cycle time step, and thus it is a second-order accurate algorithm in time. A simplified second-order Godunov-type solver is used for the continuity equations. The method is applied to simulation of breaking waves in a 2-D water tank, and a qualitative comparison with experimental photo observations is made. Quite consistent results are observed between simulations and experiments. Commercially available software and Boundary Integral Method (BIM) have also been used to simulate the same problem. The results from present code and BIM are in good agreement with respect to breaking location and timing, while the results obtained from the comrnercial software which is only first-order accurate in time has clearly showed a temporal and spatial lag, verifying the need to use a higher order numerical scheme.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
A route optimization methodology in the frame of an onboard decision support/guidance system for the ship's master has been developed and is presented in this paper. The method aims at the minimization of the fuel vo...A route optimization methodology in the frame of an onboard decision support/guidance system for the ship's master has been developed and is presented in this paper. The method aims at the minimization of the fuel voyage cost and the risks related to the ship's seakeeping performance expected to be within acceptable limits of voyage duration. Parts of this methodology were implemented by interfacing alternative probability assessment methods, such as Monte Carlo, first order reliability method (FORM) and second order reliability method (SORM), and a 3-D seakeeping code, including a software tool for the calculation of the added resistance in waves of NTUA-SDL. The entire system was integrated within the probabilistic analysis software PROBAN. Two of the main modules for the calculation of added resistance and the probabilistic assessment for the considered seakeeping hazards with respect to exceedance levels of predefined threshold values are herein elaborated and validation studies proved their efficiency in view of their implementation into an on-board optimization system.展开更多
The electro-optic properties of a poled second-order nonlinear optical maleimide polymer system were reported.This polymer was synthesized by doping disperse red 1 moieties into the maleimide system as the side chains...The electro-optic properties of a poled second-order nonlinear optical maleimide polymer system were reported.This polymer was synthesized by doping disperse red 1 moieties into the maleimide system as the side chains.Its glass transition temperature was measured to be 202 ℃ by Differential Scanning Calorimetry (DSC) technology.After being poled,the measured electro-optic coefficient of PHSD at the wavelength of 1 550 nm is as large as 3.03 pm/v.Except for an initial decay after being poled,PHSD exhibits little electro-optic relaxation in a long term and its electro-optic coefficient remains about 2.46 pm/v after 15 days.展开更多
In this article, we present exact solution of the Schr6dinger equation (for an N-identical body-force) for odd-A isotopes of Beryllium in the presence of Yukawa potential by Nikiforov-Uvarov (NU) method. The NU me...In this article, we present exact solution of the Schr6dinger equation (for an N-identical body-force) for odd-A isotopes of Beryllium in the presence of Yukawa potential by Nikiforov-Uvarov (NU) method. The NU method can be used to solve second order differential equation. By this method, we find the wave equation and binding energy. Numerical results of binding energy are presented and show that these results are in good agreement with experimental values.展开更多
The one dimensional Schrodinger equation associated with a time-dependent Morse potentials is studied. We use the invariant operator method (Lewis and Riesenfeld) to obtain approximate solution of the Schrodinger eq...The one dimensional Schrodinger equation associated with a time-dependent Morse potentials is studied. We use the invariant operator method (Lewis and Riesenfeld) to obtain approximate solution of the Schrodinger equation in terms of solution of second order ordinary differential equation describes the amplitude of the Morse potentials.展开更多
文摘在波浪渗流力问题的研究中,首次引入了S tokes有限振幅波的波浪模型.通过推广应用特征函数展开法和表面布源法,分析了作用在可渗弹性海床上固立圆柱结构底面由二阶绕射波浪所致渗流压力的问题.对波浪场和渗流场分别采用分区法与迭加法,并引入一个B esse l级数展开的数学解;给出了S tokes二阶波关于两种垂直型圆柱结构绕射波浪场波势及压力分布解,进而将表面布源法推广应用于对圆柱底面下海床内的二阶波渗流压力场的解析求解,取得了相应的积分解式和对应的格林函数.
文摘The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
基金Special Item of National Major Scientific Apparatus Development(No.2013YQ140431)
文摘When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.
基金Projects (61533021,61773403) supported by the National Natural Science Foundation of China
文摘Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in zinc electrolytes at the same time using the second derivative waves of single sweep oscillopolarography.Factors affecting the derivative waves of the ions were researched in a medium of dimethylglyoxime(DMG)-sodium citrate-sodium tetraborate.The results indicated that the interferences of a high concentration of Zn^2+and most other coexisting ions on the determination can be eliminated;when the Cu^2+,Cd^2+,Ni^2+and Co^2+are in the ranges of1×10^-7-3×10^-4,6×10^-7-2×10^-4,2×10^-8-1×10^-5and1×10^-8-3×10^-5mol/L,respectively,the relationships between the peak currents of the second derivative waves and the concentrations are linear;the detection limits to determine the Cu^2+,Cd^2+,Ni^2+and Co^2+are8×10^-8,2×10^-7,6×10^-9and4×10^-9mol/L,respectively.Without any sample pretreatment,the method was used to directly determine the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in actual zinc electrolytes with satisfactory results.The method is simple,sensitive and rapid.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50679010 and 50579004.
文摘Among all environmental forces acting on ocean structures and marine vessels, those resulting from wave impacts are likely to yield the highest loads. Being highly nonlinear, transient and complex, a theoretical analysis of their impact would be impossible without numerical simulations. In this paper, a pressure-split two-stage numerical algorithm is proposed based on Volume Of Fluid (VOF) methodology. The algorithm is characterized by introduction of two pressures at each half and full cycle time step, and thus it is a second-order accurate algorithm in time. A simplified second-order Godunov-type solver is used for the continuity equations. The method is applied to simulation of breaking waves in a 2-D water tank, and a qualitative comparison with experimental photo observations is made. Quite consistent results are observed between simulations and experiments. Commercially available software and Boundary Integral Method (BIM) have also been used to simulate the same problem. The results from present code and BIM are in good agreement with respect to breaking location and timing, while the results obtained from the comrnercial software which is only first-order accurate in time has clearly showed a temporal and spatial lag, verifying the need to use a higher order numerical scheme.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金supported by DNV in the framework of the GIFT strategic R&D collaboration agreement between DNV and the School of Naval Architecture and Marine Engineering of NTUA-Ship Design Laboratory
文摘A route optimization methodology in the frame of an onboard decision support/guidance system for the ship's master has been developed and is presented in this paper. The method aims at the minimization of the fuel voyage cost and the risks related to the ship's seakeeping performance expected to be within acceptable limits of voyage duration. Parts of this methodology were implemented by interfacing alternative probability assessment methods, such as Monte Carlo, first order reliability method (FORM) and second order reliability method (SORM), and a 3-D seakeeping code, including a software tool for the calculation of the added resistance in waves of NTUA-SDL. The entire system was integrated within the probabilistic analysis software PROBAN. Two of the main modules for the calculation of added resistance and the probabilistic assessment for the considered seakeeping hazards with respect to exceedance levels of predefined threshold values are herein elaborated and validation studies proved their efficiency in view of their implementation into an on-board optimization system.
基金This work is partially supported by National Natural ScienceFoundation of China ( Grant No:60377013 ,60507013) WHUT Foundation(XJJ2005175) .
文摘The electro-optic properties of a poled second-order nonlinear optical maleimide polymer system were reported.This polymer was synthesized by doping disperse red 1 moieties into the maleimide system as the side chains.Its glass transition temperature was measured to be 202 ℃ by Differential Scanning Calorimetry (DSC) technology.After being poled,the measured electro-optic coefficient of PHSD at the wavelength of 1 550 nm is as large as 3.03 pm/v.Except for an initial decay after being poled,PHSD exhibits little electro-optic relaxation in a long term and its electro-optic coefficient remains about 2.46 pm/v after 15 days.
文摘In this article, we present exact solution of the Schr6dinger equation (for an N-identical body-force) for odd-A isotopes of Beryllium in the presence of Yukawa potential by Nikiforov-Uvarov (NU) method. The NU method can be used to solve second order differential equation. By this method, we find the wave equation and binding energy. Numerical results of binding energy are presented and show that these results are in good agreement with experimental values.
文摘The one dimensional Schrodinger equation associated with a time-dependent Morse potentials is studied. We use the invariant operator method (Lewis and Riesenfeld) to obtain approximate solution of the Schrodinger equation in terms of solution of second order ordinary differential equation describes the amplitude of the Morse potentials.