期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
二阶后牛顿光线方程 被引量:5
1
作者 宫衍香 须重明 《天文学报》 CSCD 北大核心 2003年第4期382-389,共8页
近来相继提出一系列的空间天体测量计划,要求考虑在多参考系中二阶后牛顿部分对光线传播的贡献,也就是说,必须讨论在最近完成的扩展的DSX体系下的二阶后牛顿(2PN)光线方程.DSX体系是在20世纪90年代初建立的,用来讨论对N个任意形状和组... 近来相继提出一系列的空间天体测量计划,要求考虑在多参考系中二阶后牛顿部分对光线传播的贡献,也就是说,必须讨论在最近完成的扩展的DSX体系下的二阶后牛顿(2PN)光线方程.DSX体系是在20世纪90年代初建立的,用来讨论对N个任意形状和组成、自转可变形物体的一套完整的一阶后牛顿(1PN)天体力学理论.在此建议采用迭代的方法来推导2PN光线方程.从度规和Christoffel记号出发推导太阳系中的2PN光线方程.当忽略掉更高阶的项时,2PN光线方程将回到在很多教科书中广泛出现的1PN光线方程.利用这套方程就可以计算太阳系的光线传播. 展开更多
关键词 二阶牛顿近似方法 光线方程 广义相对论 天体测量
下载PDF
磁场中载流导体系统的解析逼近解
2
作者 赵旭奇 郑炎 刘伟佳 《长春工业大学学报》 CAS 2024年第6期525-529,共5页
采用二阶牛顿-谐波平衡方法构造磁场中载流导体系统的解析逼近解,系统是一个具有非对称恢复力函数的保守振动系统,其恢复力形式导致系统具有强非线性。为提高方法的收敛速度,在对恢复力幂级数展开过程中保留二次项,借助线性化方程分两... 采用二阶牛顿-谐波平衡方法构造磁场中载流导体系统的解析逼近解,系统是一个具有非对称恢复力函数的保守振动系统,其恢复力形式导致系统具有强非线性。为提高方法的收敛速度,在对恢复力幂级数展开过程中保留二次项,借助线性化方程分两步求得系统的解析逼近周期与周期解。通过与数值方法构造的精确解对比,验证所得逼近解无论在小振幅还是大振幅情况下都具有较高精度。 展开更多
关键词 载流导体 二阶牛顿方法 谐波平衡方法 解析逼近解
下载PDF
Newton-EGMSOR Methods for Solution of Second Order Two-Point Nonlinear Boundary Value Problems
3
作者 Jumat Sulaiman Mohd Khatim Hasan +1 位作者 Mohamed Othman Samsul Ariffin Abdul Karim 《Journal of Mathematics and System Science》 2012年第3期185-190,共6页
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A... The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods. 展开更多
关键词 Explicit group MSOR iteration second order scheme two-point nonlinear boundary value problem.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部