A comparison theorem, by means of a method of direct analysis, is established for a linear impulsive delay differential equation of second order, which improves, extends and correlates the results obtained in the lite...A comparison theorem, by means of a method of direct analysis, is established for a linear impulsive delay differential equation of second order, which improves, extends and correlates the results obtained in the literature.展开更多
考虑带有阻尼项的二阶线性脉冲时滞微分方程.利用脉冲微分不等式和脉冲积分不等式理论,证明了对应于方程的基本解X(t,s)及其导数Xt′(t,s)在任一平面区域[t0,b)×[t0,b)内是有界的.应用L ebesgue控制收敛定理证明了具有齐次脉冲条...考虑带有阻尼项的二阶线性脉冲时滞微分方程.利用脉冲微分不等式和脉冲积分不等式理论,证明了对应于方程的基本解X(t,s)及其导数Xt′(t,s)在任一平面区域[t0,b)×[t0,b)内是有界的.应用L ebesgue控制收敛定理证明了具有齐次脉冲条件且初始函数满足φ(t)=0时初始问题的解可由函数X(t,s)f(s)的积分表示.最后给出了一般初始问题解的积分表示.B erezansky and B raverm an的结论是本文结果中阻尼项系数a(t)=0的特殊情形.展开更多
文摘A comparison theorem, by means of a method of direct analysis, is established for a linear impulsive delay differential equation of second order, which improves, extends and correlates the results obtained in the literature.
文摘考虑带有阻尼项的二阶线性脉冲时滞微分方程.利用脉冲微分不等式和脉冲积分不等式理论,证明了对应于方程的基本解X(t,s)及其导数Xt′(t,s)在任一平面区域[t0,b)×[t0,b)内是有界的.应用L ebesgue控制收敛定理证明了具有齐次脉冲条件且初始函数满足φ(t)=0时初始问题的解可由函数X(t,s)f(s)的积分表示.最后给出了一般初始问题解的积分表示.B erezansky and B raverm an的结论是本文结果中阻尼项系数a(t)=0的特殊情形.