A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolom...A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.展开更多
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three...The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.展开更多
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to...Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.展开更多
SPIE-Vol.3867 0201928SPIE 会议录,卷3867:云层与大气中卫星遥感4=Pro-ceedings of SPIE Vol.3867:Satellite remote sensing ofclouds and the atmosphere Ⅳ[会,英]/University of Flo-rence,Department of Earth Science.—366P.(EC...SPIE-Vol.3867 0201928SPIE 会议录,卷3867:云层与大气中卫星遥感4=Pro-ceedings of SPIE Vol.3867:Satellite remote sensing ofclouds and the atmosphere Ⅳ[会,英]/University of Flo-rence,Department of Earth Science.—366P.(EC)本会议录收集了在意大利 Florence 召开的云层与大气中卫星遥感会议上发表的38篇论文,内容涉及多维辐射云层模型,太阳表面辐照遥感,利用红外光谱特征对云层检测,依据气象雷达数据跟踪全球雨模式,卷云的远红外测量,喇曼激光雷达测量云中水滴尺寸,微波湿度探测器用接收机,烟雾与痕迹种类,辐射传递,搜索方法与数据同化。展开更多
Previous studies indicated that fruit bats carry two betacoronaviruses,BatCoV HKU9 and BatCoV GCCDC1.To investigate the epidemiology and genetic diversity of these coronaviruses,we conducted a longitudinal surveillanc...Previous studies indicated that fruit bats carry two betacoronaviruses,BatCoV HKU9 and BatCoV GCCDC1.To investigate the epidemiology and genetic diversity of these coronaviruses,we conducted a longitudinal surveillance in fruit bats in Yunnan province,China during 2009–2016.A total of 59(10.63%)bat samples were positive for the two betacorona-viruses,46(8.29%)for HKU9 and 13(2.34%)for GCCDC1,or closely related viruses.We identified a novel HKU9 strain,tentatively designated as BatCoV HKU9-2202,by sequencing the full-length genome.The BatCoV HKU9-2202 shared 83%nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences.The most divergent region is in the spike protein,which only shares 68%amino acid identity with BatCoV HKU9.Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1,but some HKU9 was also detected in the heart,kidney,and lung tissues of bats.This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.展开更多
基金Project(2012CB214803)supported by the Major State Basic Research Development Program,ChinaProject(2011ZX5017-001-HZO2)supported by the National Science & Technology Special Project,China+1 种基金Project(2011D-5006-0105)supported by the PetroChina Research Fund,ChinaProject(SZD0414)supported by the Key Subject Construction Project of Sichuan Province,China
文摘A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.
基金Supported by the National Natural Science Foundation of China (Nos.40930845 and 41006031)the International Science & Technology Cooperation Program of China (No. 2010DFA21740)the National Science and Technology Major Project (No. 2011ZX05026-004-06)
文摘The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.
基金a part of the Project on "Building Effective Water Governance in the Asian Highlands" supported by Canada’s International Development Research Centre (IDRC)National Science Foundation of China, Grant No. 31270524the CGIAR research programs on ‘Climate change adaptation and mitigation’ (CRP6.4)
文摘Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.
文摘SPIE-Vol.3867 0201928SPIE 会议录,卷3867:云层与大气中卫星遥感4=Pro-ceedings of SPIE Vol.3867:Satellite remote sensing ofclouds and the atmosphere Ⅳ[会,英]/University of Flo-rence,Department of Earth Science.—366P.(EC)本会议录收集了在意大利 Florence 召开的云层与大气中卫星遥感会议上发表的38篇论文,内容涉及多维辐射云层模型,太阳表面辐照遥感,利用红外光谱特征对云层检测,依据气象雷达数据跟踪全球雨模式,卷云的远红外测量,喇曼激光雷达测量云中水滴尺寸,微波湿度探测器用接收机,烟雾与痕迹种类,辐射传递,搜索方法与数据同化。
基金supported by the China Natural Science Foundation (81290341 and 31621061 to ZLS)United States Agency for International Development Emerging Pandemic Threats PREDICT project (AID-OAA-A-14-00102)National Institute of Allergy and Infectious Diseases of the National Institutes of Health (Award Number R01AI110964)
文摘Previous studies indicated that fruit bats carry two betacoronaviruses,BatCoV HKU9 and BatCoV GCCDC1.To investigate the epidemiology and genetic diversity of these coronaviruses,we conducted a longitudinal surveillance in fruit bats in Yunnan province,China during 2009–2016.A total of 59(10.63%)bat samples were positive for the two betacorona-viruses,46(8.29%)for HKU9 and 13(2.34%)for GCCDC1,or closely related viruses.We identified a novel HKU9 strain,tentatively designated as BatCoV HKU9-2202,by sequencing the full-length genome.The BatCoV HKU9-2202 shared 83%nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences.The most divergent region is in the spike protein,which only shares 68%amino acid identity with BatCoV HKU9.Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1,but some HKU9 was also detected in the heart,kidney,and lung tissues of bats.This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.