由于点云的非结构性和无序性,目前已有的点云分类网络在精度上仍然需要进一步提高.通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面,构造一个有效的点云分类网络.首先,针对点云的非结构性,通过学习中心点特征与近邻点特征...由于点云的非结构性和无序性,目前已有的点云分类网络在精度上仍然需要进一步提高.通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面,构造一个有效的点云分类网络.首先,针对点云的非结构性,通过学习中心点特征与近邻点特征之间的关系,为不规则的近邻点分配不同的权重,以此构建局部结构;然后,使用注意力思想,提出加权平均池化(Weighted average pooling,WAP),通过自注意力方式,学习每个高维特征的注意力分数,在应对点云无序性的同时,可以有效地聚合冗余的高维特征;最后,利用交叉熵损失与中心损失之间的互补关系,提出联合损失函数(Joint loss function,JL),在增大类间距离的同时,减小类内距离,进一步提高了网络的分类能力.在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行实验,与目前性能最好的多个网络相比较,验证了该整体网络结构的优越性.展开更多
深度学习作为点云分类的重要方法之一,通常会因为点云的稀疏性、无序性、有限性等特点,导致卷积算子不能充分提取局部空间相关性,直接使用卷积提取点的相关特征将导致特征信息的丢失。为此提出一种经过X变换后的点云分类卷积神经网络:XT...深度学习作为点云分类的重要方法之一,通常会因为点云的稀疏性、无序性、有限性等特点,导致卷积算子不能充分提取局部空间相关性,直接使用卷积提取点的相关特征将导致特征信息的丢失。为此提出一种经过X变换后的点云分类卷积神经网络:XTNet(convolutional neural network based on X-transform)。XTNet对输入的原始点云数据进行X变换,将它们置换成潜在的规范顺序,抑制点云无序性、稀疏性对卷积操作的影响,避免卷积操作过程中的信息丢失;使用K近邻算法构建局部区域后,使用卷积层提取局部信息;在提取局部特征的同时通过通道扩充增加信息传递、丰富特征;在各局部特征提取模块间设置跳跃连接,进一步减少局部信息的丢失。在标准公开数据集ModelNet40和真实数据集ScanObjectNN中进行了实验。实验结果表明,与目前主流的多个高性能网络相比,XTNet分类准确率提高了0.3~4个百分点,并且拥有良好的鲁棒性和普适性。展开更多
文摘由于点云的非结构性和无序性,目前已有的点云分类网络在精度上仍然需要进一步提高.通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面,构造一个有效的点云分类网络.首先,针对点云的非结构性,通过学习中心点特征与近邻点特征之间的关系,为不规则的近邻点分配不同的权重,以此构建局部结构;然后,使用注意力思想,提出加权平均池化(Weighted average pooling,WAP),通过自注意力方式,学习每个高维特征的注意力分数,在应对点云无序性的同时,可以有效地聚合冗余的高维特征;最后,利用交叉熵损失与中心损失之间的互补关系,提出联合损失函数(Joint loss function,JL),在增大类间距离的同时,减小类内距离,进一步提高了网络的分类能力.在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行实验,与目前性能最好的多个网络相比较,验证了该整体网络结构的优越性.
文摘深度学习作为点云分类的重要方法之一,通常会因为点云的稀疏性、无序性、有限性等特点,导致卷积算子不能充分提取局部空间相关性,直接使用卷积提取点的相关特征将导致特征信息的丢失。为此提出一种经过X变换后的点云分类卷积神经网络:XTNet(convolutional neural network based on X-transform)。XTNet对输入的原始点云数据进行X变换,将它们置换成潜在的规范顺序,抑制点云无序性、稀疏性对卷积操作的影响,避免卷积操作过程中的信息丢失;使用K近邻算法构建局部区域后,使用卷积层提取局部信息;在提取局部特征的同时通过通道扩充增加信息传递、丰富特征;在各局部特征提取模块间设置跳跃连接,进一步减少局部信息的丢失。在标准公开数据集ModelNet40和真实数据集ScanObjectNN中进行了实验。实验结果表明,与目前主流的多个高性能网络相比,XTNet分类准确率提高了0.3~4个百分点,并且拥有良好的鲁棒性和普适性。