Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In add...Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.展开更多
In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in det...In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in detail the earthquake fault types and the characteristics of the modern tectonic stress field in the Yunnan region. The results show that most moderate-strong earthquakes occurring in the Yunnan region are of the strike-slip type, amounting to 80% of the total. Normal faulting and normal with strike-slip and reverse and reverse with strike-slip earthquakes is almost equivalent in proportion, about 8% each. The tectonic stress field of the Yunnan region is near-horizontal, and the dips of earthquake fault planes are large. There are three main dynamic sources acting on the Yunnan region: one is the NE, NNE and NNW-directed acting force from Myanmar, Laos and Vietnam; the second is the SE-SSE directed force from the Sichuan and Sichuan-Yunnan rhombus block and the third is the NW-NNW directed force from the South China block. These three acting forces have controlled the faulting behavior of the main faults and the characteristics of strong earthquake activity of Yunnan and its adjacent regions.展开更多
The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced an...The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.展开更多
Source spectra for moderate and small earthquakes are obtained after removing the path effect, site effect, and instrument response, etc. in the observed S-wave spectra. Based on the Brune source model and by means of...Source spectra for moderate and small earthquakes are obtained after removing the path effect, site effect, and instrument response, etc. in the observed S-wave spectra. Based on the Brune source model and by means of genetic algorithm, the source parameters including seismic moment, stress drop, source dimension, etc. are determined, the radiated seismic energy for small-to-moderate earthquakes is measured with consideration of underestimation and compensation brought forth by limited bandwidth of the instrument, and the scaling relationships of static and dynamic parameters for earthquakes展开更多
We computed source parameters for 143 earthquakes with M_L≥ 1. 0 occurring from January,2011 to March,2014 using waveform data recorded by the Nuozhadu and Jinghong Reservoir Seismic Networks. Then,the variation of s...We computed source parameters for 143 earthquakes with M_L≥ 1. 0 occurring from January,2011 to March,2014 using waveform data recorded by the Nuozhadu and Jinghong Reservoir Seismic Networks. Then,the variation of seismic activity and the characteristics of source parameters before and after the impoundment of the reservoir were investigated. The results show that:( 1) the seismic activity increased obviously after the impoundment,especially during the 3- 4 months after impoundment;( 2) the focal depths of the earthquakes occurring in the reservoir area are shallower than the earthquakes occurring outside the reservoir area in the initial stage of impoundment,but after a time,the difference was gradually reduced;( 3) corner frequency varies with the seismic moment and the log-linear relationship is more obvious after impounding;( 4)stress drop and apparent stress increase with increasing seismic moment,moreover they are lower for the earthquakes occurring in the reservoir area after impounding than those occurring outside the reservoir area or before impounding with the same seismic moment;( 5) the effect of reservoir impoundment on an earthquake can reach a depth of 10 km,and the maximum effect is seen at a depth of 3km- 6km,and the differences of seismic activity and average apparent stress between the inside and outside of the reservoir are significant.展开更多
In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are ana...In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.展开更多
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main...The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.展开更多
A total of 1939 receiver functions were obtained from 732 teleseismic events (M〉5.0) recorded at 21 broadband portable seis- mic stations on the Tengchong, Baoshan and Simao blocks and Yangtze platform. These stati...A total of 1939 receiver functions were obtained from 732 teleseismic events (M〉5.0) recorded at 21 broadband portable seis- mic stations on the Tengchong, Baoshan and Simao blocks and Yangtze platform. These stations were installed by the Institute of Crustal Dynamics, China Earthquake Administration during 2010 and 2011. Using the H-x stacking and searching method, crustal thickness and velocity ratio beneath the stations are obtained. Results show that crustal thickness and Poisson's ratio in- ferred from the velocity ratio clearly vary, and they illustrate block features in deep structures. Except for the Tengchong block crustal thickness increases from south to north along the same block and from west to east across different blocks. In the Yangtze platform, Poisson's ratio and crustal thickness show a consistent and significant increasing trend from south to north, possibly indicating that crustal thickening is caused mainly by lower crustal variations. In contrast, Poisson's ratio has no sig- nificant change within the Baoshan and Simao blocks. Such differences demonstrate that the Jinshajiang-Red River fault is a southern boundary of the South China block. The H-κ results inferred from three portable stations on the Tengchong block show high Poisson's ratios, but they vary clearly with back-azimuth, implying the existence of strong anisotropy in the crustal medium beneath the stations.展开更多
基金This project was supported bythefundamental researchfunds ofYunnan Province
文摘Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.
基金sponsored by the important projects of Yunnan Province,entitled"The regularity of strong earthquake activities and the plate margindynamic mechanism on the eastern margin of the Qinghai-Tibet plateau"(2010CC006)"Study on relationship between evolutionary dynamics of geophysical and geochemistry field and strong seismic activity in Yunnan"(JCYB200806015)
文摘In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in detail the earthquake fault types and the characteristics of the modern tectonic stress field in the Yunnan region. The results show that most moderate-strong earthquakes occurring in the Yunnan region are of the strike-slip type, amounting to 80% of the total. Normal faulting and normal with strike-slip and reverse and reverse with strike-slip earthquakes is almost equivalent in proportion, about 8% each. The tectonic stress field of the Yunnan region is near-horizontal, and the dips of earthquake fault planes are large. There are three main dynamic sources acting on the Yunnan region: one is the NE, NNE and NNW-directed acting force from Myanmar, Laos and Vietnam; the second is the SE-SSE directed force from the Sichuan and Sichuan-Yunnan rhombus block and the third is the NW-NNW directed force from the South China block. These three acting forces have controlled the faulting behavior of the main faults and the characteristics of strong earthquake activity of Yunnan and its adjacent regions.
文摘The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.
基金funded jointly by the Key Applied and Fundamental Research Project of Yunnan Province (2010CC006)the Key Project of Yunnan Province (JCYB-20080601-4)the Joint Earthquake Science Foundation of China (C08065)
文摘Source spectra for moderate and small earthquakes are obtained after removing the path effect, site effect, and instrument response, etc. in the observed S-wave spectra. Based on the Brune source model and by means of genetic algorithm, the source parameters including seismic moment, stress drop, source dimension, etc. are determined, the radiated seismic energy for small-to-moderate earthquakes is measured with consideration of underestimation and compensation brought forth by limited bandwidth of the instrument, and the scaling relationships of static and dynamic parameters for earthquakes
基金funded by the National Natural Science Foundation of China(Grant No.41174051)the National Science and Technology Pillar Program of the 12th"Five-year Plan"of China(Grant No.2012BAK19B02)
文摘We computed source parameters for 143 earthquakes with M_L≥ 1. 0 occurring from January,2011 to March,2014 using waveform data recorded by the Nuozhadu and Jinghong Reservoir Seismic Networks. Then,the variation of seismic activity and the characteristics of source parameters before and after the impoundment of the reservoir were investigated. The results show that:( 1) the seismic activity increased obviously after the impoundment,especially during the 3- 4 months after impoundment;( 2) the focal depths of the earthquakes occurring in the reservoir area are shallower than the earthquakes occurring outside the reservoir area in the initial stage of impoundment,but after a time,the difference was gradually reduced;( 3) corner frequency varies with the seismic moment and the log-linear relationship is more obvious after impounding;( 4)stress drop and apparent stress increase with increasing seismic moment,moreover they are lower for the earthquakes occurring in the reservoir area after impounding than those occurring outside the reservoir area or before impounding with the same seismic moment;( 5) the effect of reservoir impoundment on an earthquake can reach a depth of 10 km,and the maximum effect is seen at a depth of 3km- 6km,and the differences of seismic activity and average apparent stress between the inside and outside of the reservoir are significant.
基金sponsored by the special fund of“A Study on Short-term Seismic Tracking of Strong Earthquakes in the Yunnan Area”of the“Ten Key Projects”in Yunnan Provincethe 2016 Earthquake Trend Tracking Task of China Earthquake Administration(2016010305)the 2015 Earthquake Trend Tracking Task of Earthquake Administration of Yunnan Province
文摘In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41472180 & 41172180)
文摘The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.
基金supported by the National Natural Science Foundation of China(Grant No. 40974021)Basic Science and Research Special Project(Grant No. ZDJ2012-19)
文摘A total of 1939 receiver functions were obtained from 732 teleseismic events (M〉5.0) recorded at 21 broadband portable seis- mic stations on the Tengchong, Baoshan and Simao blocks and Yangtze platform. These stations were installed by the Institute of Crustal Dynamics, China Earthquake Administration during 2010 and 2011. Using the H-x stacking and searching method, crustal thickness and velocity ratio beneath the stations are obtained. Results show that crustal thickness and Poisson's ratio in- ferred from the velocity ratio clearly vary, and they illustrate block features in deep structures. Except for the Tengchong block crustal thickness increases from south to north along the same block and from west to east across different blocks. In the Yangtze platform, Poisson's ratio and crustal thickness show a consistent and significant increasing trend from south to north, possibly indicating that crustal thickening is caused mainly by lower crustal variations. In contrast, Poisson's ratio has no sig- nificant change within the Baoshan and Simao blocks. Such differences demonstrate that the Jinshajiang-Red River fault is a southern boundary of the South China block. The H-κ results inferred from three portable stations on the Tengchong block show high Poisson's ratios, but they vary clearly with back-azimuth, implying the existence of strong anisotropy in the crustal medium beneath the stations.