An adiabatic bin-sized cloud parcel model is developed by incorporating the multi-chemical-component (MCC) aerosol effects into the UWyo single-chemical-component (SCC) parcel model. The effects of MCC aerosols on the...An adiabatic bin-sized cloud parcel model is developed by incorporating the multi-chemical-component (MCC) aerosol effects into the UWyo single-chemical-component (SCC) parcel model. The effects of MCC aerosols on the warm cloud microphysics in North China are investigated with the model. The simulations are initialized using the data on chemical components and number size distribution of aerosols measured during the IPAC (Influence of Pollution on Aerosols and Cloud Microphysics in North China) campaign in spring 2006. It is found that the MCC aerosols in North China increase the cloud droplet number concentration (CDNC) and decrease the effective radius more efficiently than pure ammonium-sulfate aerosols. It is also shown that the MCC aerosols in North China can narrow the cloud droplet spectra (CDS) by increasing CDNC in small size and decreasing CDNC in large size. Our results indicate that aerosol chemical components and their size distributions can influence the microphysics of warm clouds, and thus affect atmospheric radiation and precipitation. This should attract more attentions in weather and climate change research in the future.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 40433008)Research and Development Special Fund for Public Welfare Industry (Meteorology) of China Meteorological Administration (Grant Nos. GYHY(QX)-2007-6-36, GYHY(QX)-2007-6-5)Foundation of Nanjing University of Information Science & Technology (Grant No. NUIST-20090218#)
文摘An adiabatic bin-sized cloud parcel model is developed by incorporating the multi-chemical-component (MCC) aerosol effects into the UWyo single-chemical-component (SCC) parcel model. The effects of MCC aerosols on the warm cloud microphysics in North China are investigated with the model. The simulations are initialized using the data on chemical components and number size distribution of aerosols measured during the IPAC (Influence of Pollution on Aerosols and Cloud Microphysics in North China) campaign in spring 2006. It is found that the MCC aerosols in North China increase the cloud droplet number concentration (CDNC) and decrease the effective radius more efficiently than pure ammonium-sulfate aerosols. It is also shown that the MCC aerosols in North China can narrow the cloud droplet spectra (CDS) by increasing CDNC in small size and decreasing CDNC in large size. Our results indicate that aerosol chemical components and their size distributions can influence the microphysics of warm clouds, and thus affect atmospheric radiation and precipitation. This should attract more attentions in weather and climate change research in the future.