云机器人通过动态"卸载"任务到云端高效处理,极大提高了节点的智能水平。然而,由于云端应用的实时性差异和负载的不可预知,对网络传输的服务质量(quality of service,QoS)需求不尽相同。从控制角度研究网络传输的服务质量问题...云机器人通过动态"卸载"任务到云端高效处理,极大提高了节点的智能水平。然而,由于云端应用的实时性差异和负载的不可预知,对网络传输的服务质量(quality of service,QoS)需求不尽相同。从控制角度研究网络传输的服务质量问题,提出并实现了一种基于BP神经网络的双闭环接入控制方法(BPFD-MAC),在最大化能量利用率的同时,实现绝对服务质量和相对服务质量保证。通过反馈控制结构,将绝对QoS约束和相对QoS约束解耦为2个独立闭环:活动时间闭环根据高优先级的延迟控制节点活动时间,满足绝对约束;退避窗口闭环根据不同优先级的延迟比,调整退避时间的初始上限,保持相对延迟比例关系恒定,满足相对约束。并采用BP神经网络方法进行参数自适应校正和控制器设计。最后,基于ZigBit 900的硬件实验表明,相对于FD-MAC,BPFD-MAC不仅能够在负载动态变化时提供绝对和相对QoS保证,并且在网络高负载下,具有更高的吞吐量和能量利用率;在网络低负载下,具有更低的能耗。展开更多
文摘云机器人通过动态"卸载"任务到云端高效处理,极大提高了节点的智能水平。然而,由于云端应用的实时性差异和负载的不可预知,对网络传输的服务质量(quality of service,QoS)需求不尽相同。从控制角度研究网络传输的服务质量问题,提出并实现了一种基于BP神经网络的双闭环接入控制方法(BPFD-MAC),在最大化能量利用率的同时,实现绝对服务质量和相对服务质量保证。通过反馈控制结构,将绝对QoS约束和相对QoS约束解耦为2个独立闭环:活动时间闭环根据高优先级的延迟控制节点活动时间,满足绝对约束;退避窗口闭环根据不同优先级的延迟比,调整退避时间的初始上限,保持相对延迟比例关系恒定,满足相对约束。并采用BP神经网络方法进行参数自适应校正和控制器设计。最后,基于ZigBit 900的硬件实验表明,相对于FD-MAC,BPFD-MAC不仅能够在负载动态变化时提供绝对和相对QoS保证,并且在网络高负载下,具有更高的吞吐量和能量利用率;在网络低负载下,具有更低的能耗。