In this paper, some problems including the preparative principle, lattice transformation, optical property and theory of rutile type titania-mica pearlescent pigments, were studied and inquired into, by determination...In this paper, some problems including the preparative principle, lattice transformation, optical property and theory of rutile type titania-mica pearlescent pigments, were studied and inquired into, by determination and analysis of XRD, SEM, reflectivity.展开更多
In the present study, the Ti-in-biotite geother- mometer was revised using more than 300 natural rutile- or ilmenite-bearing metapelites collected worldwide. The formulation was empirically calibrated as ln[T(℃)]= ...In the present study, the Ti-in-biotite geother- mometer was revised using more than 300 natural rutile- or ilmenite-bearing metapelites collected worldwide. The formulation was empirically calibrated as ln[T(℃)]= 6.313 +0.22 41n(XTi ) -0.2881n(XFe ) -0. 4491n(XMg) + 0.15P (GPa), with Xj=j/(Fe+Mg+Al^Ⅵ+Ti) in biotite, assuming ferric iron content of 11.6 mol% of the total iron in biotite. This thermometer is consistent with the well-calibrated garnet-biotite thermometer within error of i50 ℃ for most of the calibrant samples and can successfully distin- guish systematic temperature changes of different meta- morphic zones in both prograde and inverted metamorphic terranes as well as thermal contact aureoles. Thus, the thermometer truthfully reflects real geologic conditions and can be applied to TiO2-saturated metapelites metamor- phosed at the crustal level within the calibration ranges (450-840 ℃, 0.1-1.9 GPa, XTi = 0.02-0.14 in biotite).展开更多
文摘In this paper, some problems including the preparative principle, lattice transformation, optical property and theory of rutile type titania-mica pearlescent pigments, were studied and inquired into, by determination and analysis of XRD, SEM, reflectivity.
基金supported by the National Natural Science Foundation of China(41225007)
文摘In the present study, the Ti-in-biotite geother- mometer was revised using more than 300 natural rutile- or ilmenite-bearing metapelites collected worldwide. The formulation was empirically calibrated as ln[T(℃)]= 6.313 +0.22 41n(XTi ) -0.2881n(XFe ) -0. 4491n(XMg) + 0.15P (GPa), with Xj=j/(Fe+Mg+Al^Ⅵ+Ti) in biotite, assuming ferric iron content of 11.6 mol% of the total iron in biotite. This thermometer is consistent with the well-calibrated garnet-biotite thermometer within error of i50 ℃ for most of the calibrant samples and can successfully distin- guish systematic temperature changes of different meta- morphic zones in both prograde and inverted metamorphic terranes as well as thermal contact aureoles. Thus, the thermometer truthfully reflects real geologic conditions and can be applied to TiO2-saturated metapelites metamor- phosed at the crustal level within the calibration ranges (450-840 ℃, 0.1-1.9 GPa, XTi = 0.02-0.14 in biotite).