Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mou...Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mountainous areas in terms of land use structure, degree and development potential, providing references for rational use of land in mountainous areas in Yunnan.展开更多
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I...The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.展开更多
Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty...Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty of texture and structure information extraction in unevenly sampled points.The paper analyzes the characteristics of Laplacian of Gaussian(LoG) Filter and its potential use for structure detection in LiDAR data.A feature detection method based on LoG filtering is presented and ex-perimented on the unstructured points.The method filters the elevation value(namely,z coordinate value) of each point by convo-lution using LoG kernel within its local area and derives patterns suggesting the existence of certain types of ground ob-jects/features.The experiments are carried on a point cloud dataset acquired from a neighborhood area.The results demonstrate patterns detected at different scales and the relationship between standard deviation that defines LoG kernel and neighborhood size,which specifies the local area that is analyzed.展开更多
基金Supported by National Natural Science Foundation of China(41261018)~~
文摘Abstract Based on Second National Land Survey during 2007-2009 and land use type survey in ftatland areas, status quo of land use in mountainous areas in Yun- nan was measured, and analysis was made on land use in mountainous areas in terms of land use structure, degree and development potential, providing references for rational use of land in mountainous areas in Yunnan.
基金National Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)University Superior Discipline Construction Project of Jiangsu Province。
文摘The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.
基金Supported by the National Natural Science Foundation of China (No.40871211)
文摘Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty of texture and structure information extraction in unevenly sampled points.The paper analyzes the characteristics of Laplacian of Gaussian(LoG) Filter and its potential use for structure detection in LiDAR data.A feature detection method based on LoG filtering is presented and ex-perimented on the unstructured points.The method filters the elevation value(namely,z coordinate value) of each point by convo-lution using LoG kernel within its local area and derives patterns suggesting the existence of certain types of ground ob-jects/features.The experiments are carried on a point cloud dataset acquired from a neighborhood area.The results demonstrate patterns detected at different scales and the relationship between standard deviation that defines LoG kernel and neighborhood size,which specifies the local area that is analyzed.