In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith...In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.展开更多
Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under ...Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under the background of urbanization and proposed strategies for further development, providing references for land uses scientific decision making.展开更多
基金The National Natural Science Foundation of China(No.61300167)the Open Project Program of State Key Laboratory for Novel Software Technology of Nanjing University(No.KFKT2015B17)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20151274)Qing Lan Project of Jiangsu Provincethe Open Project Program of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education(No.JYB201606)the Program for Special Talent in Six Fields of Jiangsu Province(No.XYDXXJS-048)
文摘In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
基金Supported by Science Research Foundation of the Education Department of Yunnan Province(2014J089)~~
文摘Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under the background of urbanization and proposed strategies for further development, providing references for land uses scientific decision making.