期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于相似日和CAPSO-SNN的光伏发电功率预测 被引量:31
1
作者 陈通 孙国强 +4 位作者 卫志农 臧海祥 孙永辉 Kwok W Cheung 李慧杰 《电力自动化设备》 EI CSCD 北大核心 2017年第3期66-71,共6页
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强... 针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 展开更多
关键词 光伏发电 功率预测 SPIKING神经网络 云自适应粒子群优化算法 相似日选取
下载PDF
基于数据挖掘和CAPSO-SNN的电力作业风险态势感知 被引量:27
2
作者 陈碧云 李弘斌 李滨 《电力自动化设备》 EI CSCD 北大核心 2020年第1期148-155,共8页
随着电力作业安全监控技术的不断发展,电力作业全过程在线信息采集成为可能。以电力作业数据为基础,提出一种基于数据挖掘和云自适应粒子群优化脉冲神经网络(CAPSO-SNN)的电力作业风险态势感知方法。该方法首先从电力作业事故事件数据... 随着电力作业安全监控技术的不断发展,电力作业全过程在线信息采集成为可能。以电力作业数据为基础,提出一种基于数据挖掘和云自适应粒子群优化脉冲神经网络(CAPSO-SNN)的电力作业风险态势感知方法。该方法首先从电力作业事故事件数据库中提炼出所有作业风险影响因素以构建风险影响因素体系,然后通过主成分分析法从中挖掘出作业过程中应重点关注的风险关键要素,再以风险关键要素作为输入参数,通过云自适应粒子群优化脉冲神经网络进行作业风险态势感知的训练和预测。最后,以某电网公司的实际历史作业事故事件为样本,展示了所提方法的应用过程。算例结果表明,该方法不仅适用于分析电力作业的风险组成,还可以在作业过程中有效地感知风险状态信息,跟踪风险发展趋势,有助于实施电力作业风险的全过程精细化态势利导管控。 展开更多
关键词 数据挖掘 态势感知 云自适应粒子群优化 脉冲神经网络 态势利导 电力作业
下载PDF
基于CAPSO-BPNN的铁路信号运行状态预警方法研究 被引量:2
3
作者 喻喜平 《山东农业大学学报(自然科学版)》 北大核心 2019年第2期281-284,共4页
为提高铁路信号运行状态预警的准确率,克服BPNN模型存在收敛速度慢和局部最优的缺点及其性能易受网络的初始权值、阈值等参数选择的影响,本文提出一种基于CAPSO-BPNN的铁路信号运行状态预警模型。结果表明,与PSO-BPNN和BPNN相比较,CAPSO... 为提高铁路信号运行状态预警的准确率,克服BPNN模型存在收敛速度慢和局部最优的缺点及其性能易受网络的初始权值、阈值等参数选择的影响,本文提出一种基于CAPSO-BPNN的铁路信号运行状态预警模型。结果表明,与PSO-BPNN和BPNN相比较,CAPSO-BPNN模型具有更高的预警准确率和更优的性能,为铁路信号运行状态预警提供了新的方法和途径。 展开更多
关键词 铁路信号 云自适应粒子群优化算法 BP神经网络 运行状态
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部