In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared ban...In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.展开更多
In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imag...In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.展开更多
基金Supported by the Antarctic Geography Information Acquisition and Environmental Change Research of China (No.14601402024-04-06).
文摘In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.
基金This research work is funded by the Scientific Research Program of Shaanxi Provincial Education Department(No.19JK0668)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588).
文摘In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.