Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a ...Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the展开更多
Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary la...Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41475039]the National Basic Research Program of China[grant number 2015CB953601]
文摘Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the
基金supported by the CAS Strategic Priority Research Program (Grant No. XDA05110304)the National Basic Research Program of China (Grant No. 2015CB954102)the National Natural Science Foundation of China (Grant Nos. 41205079 & 41305040)
文摘Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.