期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
马泰勒虫RON2基因真核表达及互作蛋白预测分析
1
作者 芦星 范士龙 +7 位作者 刘明明 王水怡 刘雨桐 李思媛 王金明 巴音查汗 刘丹丹 张伟 《动物医学进展》 北大核心 2023年第7期23-30,共8页
为探究马泰勒虫入侵宿主细胞关键蛋白RON2的功能及其互作蛋白,并尝试解析马泰勒虫入侵关键结构--移动连接体,以马泰勒虫新疆分离株为研究对象,在课题组前期获得马泰勒虫RON 2基因的基础上,设计特异性引物,构建重组蛋白真核表达载体pmche... 为探究马泰勒虫入侵宿主细胞关键蛋白RON2的功能及其互作蛋白,并尝试解析马泰勒虫入侵关键结构--移动连接体,以马泰勒虫新疆分离株为研究对象,在课题组前期获得马泰勒虫RON 2基因的基础上,设计特异性引物,构建重组蛋白真核表达载体pmcherry-TeRON2。融合表达重组蛋白,制备His-TeRON2多克隆抗体,通过间接免疫荧光和Western blot鉴定蛋白的表达情况,最后对RON 2基因编码蛋白的互作蛋白进行预测分析。成功构建pmcherry-TeRON2真核表达质粒,获得的马泰勒虫TeRON2重组蛋白分子质量为37 ku,间接免疫荧光和Western blot结果显示,重组蛋白能够被抗体特异性识别,大小正确。间接ELISA结果显示,当抗原包被量为2μg/mL时,His-TeRON2小鼠多克隆抗体效价为1∶409600,多克隆抗体真核重组蛋白发生特异性反应。TeRON2蛋白互作网络预测显示,共有10种蛋白与马泰勒虫TeRON2蛋白发生相互作用关系,大部分蛋白都与虫体入侵宿主细胞的关键结构移动连接体相关,包括顶膜抗原1、棒状体颈部蛋白4及棒状体颈部蛋白11、棒状体相关蛋白和滑行相关蛋白等,另外与鸟苷酸环化酶和钙依赖激酶也有相互作用关系。推测TeRON2蛋白可能与入侵关键结构移动连接体(MJ)形成有关,参与虫体对宿主细胞的入侵过程,为进一步深入研究马泰勒虫TeRON2蛋白作为疫苗候选抗原以及在虫体入侵宿主过程中的作用提供了理论依据。 展开更多
关键词 马泰勒虫 RON 2基因 真核表达 互作蛋白预测 多克隆抗体制备
下载PDF
禾谷刺盘孢菌在侵染早期与玉米蛋白的互作预测与分析
2
作者 连玲丽 谭飘 +1 位作者 陈倩倩 何华勤 《四川农业大学学报》 CSCD 北大核心 2016年第3期270-275,共6页
【目的】研究禾谷刺盘孢菌与寄主玉米的蛋白互作关系,有助于从分子水平了解病菌致病过程及病菌-寄主互作机制。【方法】采用计算方法预测病菌侵染相关蛋白与寄主玉米蛋白的互作,并结合网络可视化工具和GO注释信息对参与互作的蛋白进行... 【目的】研究禾谷刺盘孢菌与寄主玉米的蛋白互作关系,有助于从分子水平了解病菌致病过程及病菌-寄主互作机制。【方法】采用计算方法预测病菌侵染相关蛋白与寄主玉米蛋白的互作,并结合网络可视化工具和GO注释信息对参与互作的蛋白进行深入分析。【结果】预测结果包含了355对互作蛋白,涉及16个刺盘孢菌蛋白和173个玉米蛋白,其中刺盘孢菌蛋白为蛋白酶、锌羧肽酶、木聚糖酶等潜在的致病蛋白,而病菌靶向的寄主蛋白涉及对真菌防御响应、蛋白折叠、蛋白修饰等多种生物过程。对互作蛋白信息的分析则表明预测方法既识别到已知互作,如病菌木聚糖酶与寄主木聚糖酶抑制蛋白的互作,也发现了不少新互作蛋白。【结论】这些结果为明确禾谷刺盘孢菌在侵染早期与寄主的互作机制提供了有用信息。 展开更多
关键词 禾谷刺盘孢菌 蛋白预测 病菌-寄主
下载PDF
ON NETWORK-BASED KERNEL METHODS FOR PROTEIN-PROTEIN INTERACTIONS WITH APPLICATIONS IN PROTEIN FUNCTIONS PREDICTION 被引量:1
3
作者 Limin LI Waiki CHING +1 位作者 Yatming CHAN Hiroshi MAMITSUKA 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期917-930,共14页
Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kerne... Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kernel to uncover the relationship between proteins functions and protein-protein interactions (PPI). The author first construct kernels based on PPI networks, then apply support vector machine (SVM) techniques to classify proteins into different functional groups. The 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chi-square methods. Finally, the authors conduct predictions of functions of some unknown genes and verify the preciseness of our prediction in part by the information of other data source. 展开更多
关键词 Diffusion kernel kernel method Laplacian kernel local linear embedding (LLE) kernel protein function prediction support vector machine.
原文传递
METHOD FOR QUICKLY INFERRING THE MECHANISMS OF LARGE-SCALE COMPLEX NETWORKS BASED ON THE CENSUS OF SUBGRAPH CONCENTRATIONS 被引量:1
4
作者 Bo YANG Xiaorong CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第2期252-259,共8页
A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a cens... A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method. 展开更多
关键词 Large-scale complex networks mechanism-inferring model evaluation subgraph census.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部