期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于互信息量估计的几何与概率联合整形技术
1
作者 梁家熙 牛泽坤 +1 位作者 胡卫生 义理林 《光通信研究》 2022年第3期1-6,共6页
针对正交振幅调制在高信噪比的加性高斯白噪声(AWGN)信道与香农极限有1.53 dB容量间隙的问题,文章提出了一种基于互信息量估计的几何与概率联合整形的方法,将几何整形与概率整形相结合,提升通信系统的互信息量。文章将互信息量估计作为... 针对正交振幅调制在高信噪比的加性高斯白噪声(AWGN)信道与香农极限有1.53 dB容量间隙的问题,文章提出了一种基于互信息量估计的几何与概率联合整形的方法,将几何整形与概率整形相结合,提升通信系统的互信息量。文章将互信息量估计作为计算系统互信息量的方式,以最大化互信息量为目的训练发端的编码器,实现几何整形与概率整形。通过在不同信噪比下AWGN信道中的仿真,验证了基于互信息量估计的几何与概率联合整形系统的性能要优于单独进行几何整形或概率整形的性能。在信噪比为10 dB的AWGN信道中,系统的互信息量与几何整形相比有0.0417 bit/symbol的增益,与概率整形相比有0.0279 bit/symbol的增益。 展开更多
关键词 深度学习 互信息量估计 物理层通信
下载PDF
k-NN Based Bypass Entropy and Mutual Information Estimation for Incremental Remote-Sensing Image Compressibility Evaluation 被引量:2
2
作者 Xijia Liu Xiaoming Tao +1 位作者 Yiping Duan Ning Ge 《China Communications》 SCIE CSCD 2017年第8期54-62,共9页
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still... Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames. 展开更多
关键词 remote-sensing incremental image compression entropy mutual information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部