The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
In the present paper, the effect of a small bottom tmdulation of the sea bed in the form of periodic bed form on the surface waves generated due to a rolling oscillation of a vertical barrier either partially immersed...In the present paper, the effect of a small bottom tmdulation of the sea bed in the form of periodic bed form on the surface waves generated due to a rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of non uniform finite depth is investigated. A simplified perturbation technique involving a non dimensional parameter characterizing the smallness of the bottom deformation is applied to reduce the given boundary value problem to two independent boundary value problems upto first order. The first boundary value problem corresponds to the problem of water wave generation due to rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of uniform finite depth. This is a well known problem whose solution is available in the literature. From the second boundary value problem, the first order correction to the wave amplitude at infinity is evaluated in terms of the shape function characterizing the bottom undulation, by employing Green's integral theorem. For a patch of sinusoidal ripples at the sea bottom, the first order correction to the wave amplitude at infinity for both the configuration of the barrier is then evaluated numerically and illustrated graphically for various values of the wave number. It is observed that resonant interaction of the wave generated, with the sinusoidal bottom undulation occurs when the ratio of twice the wavelength of the sinusoidal ripple to the wave length of waves generated, approaches unity. Also it is found that the resonance increases as the length of the barrier increases.展开更多
Soft machines are combinations of hard and soft active materials, thus the coupling and interaction between soft and hard components dictate the performance of soft machines. Structural optimization has been intensive...Soft machines are combinations of hard and soft active materials, thus the coupling and interaction between soft and hard components dictate the performance of soft machines. Structural optimization has been intensively used for design of conventional hard machines, while, to our best knowledge, few attempts have been made towards optimal design of soft machines. Here, we describe the sizing optimization problem of a dielectric elastomer(DE) actuated mechanical amplifier, and achieve the optimal design through combination of a commercial finite element method(FEM) software and an optimization automation software.We then design, fabricate and demonstrate a locomotive soft machine driven by DE actuator with amplified displacement output.The methodology and results present here open the door towards optimal designs of active materials based soft machines.展开更多
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.
基金Supported by DST through the Research Project No.SR/SY/MS: 521/08
文摘In the present paper, the effect of a small bottom tmdulation of the sea bed in the form of periodic bed form on the surface waves generated due to a rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of non uniform finite depth is investigated. A simplified perturbation technique involving a non dimensional parameter characterizing the smallness of the bottom deformation is applied to reduce the given boundary value problem to two independent boundary value problems upto first order. The first boundary value problem corresponds to the problem of water wave generation due to rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of uniform finite depth. This is a well known problem whose solution is available in the literature. From the second boundary value problem, the first order correction to the wave amplitude at infinity is evaluated in terms of the shape function characterizing the bottom undulation, by employing Green's integral theorem. For a patch of sinusoidal ripples at the sea bottom, the first order correction to the wave amplitude at infinity for both the configuration of the barrier is then evaluated numerically and illustrated graphically for various values of the wave number. It is observed that resonant interaction of the wave generated, with the sinusoidal bottom undulation occurs when the ratio of twice the wavelength of the sinusoidal ripple to the wave length of waves generated, approaches unity. Also it is found that the resonance increases as the length of the barrier increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472210 and 11372239)
文摘Soft machines are combinations of hard and soft active materials, thus the coupling and interaction between soft and hard components dictate the performance of soft machines. Structural optimization has been intensively used for design of conventional hard machines, while, to our best knowledge, few attempts have been made towards optimal design of soft machines. Here, we describe the sizing optimization problem of a dielectric elastomer(DE) actuated mechanical amplifier, and achieve the optimal design through combination of a commercial finite element method(FEM) software and an optimization automation software.We then design, fabricate and demonstrate a locomotive soft machine driven by DE actuator with amplified displacement output.The methodology and results present here open the door towards optimal designs of active materials based soft machines.