The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal...The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.展开更多
Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the cal...Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the calculation of internal forces and displacements. Variant three options of the soil models were used as a building supporting structure. In the case of soil model A, the soil was modelled by using of equivalent stiffness values, stemming from the theory of a rigid circular disc on an elastic homogeneous half-space. Non-uniformly modelled vertical stiffness of the soil according to the Boussinesq model was used for model B. Both models A and B are characterised by the "averaged" soil model on the bases of spring constants. Model C was used for the soil better corresponding to its actual composition by the Winkler-Pasternak theory. Model C, where the actual layered soil is considered, is modelled more accurately than for the "averaged" soil of models A and B. The dynamic response of models operating with "averaged" values of rigid and soft soil layers is markedly shifted to the conservative smaller values of internal forces. The building response tbr model C in dynamic displacements is significantly higher than for the both models A and B.展开更多
In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers t...In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
This paper presents some new dynamic interaction analysis approaches for square or non-square systems and a pairing evaluation method. For square stable systems, an open-loop approach is proposed, which features the t...This paper presents some new dynamic interaction analysis approaches for square or non-square systems and a pairing evaluation method. For square stable systems, an open-loop approach is proposed, which features the tradeoff between the contributions of response time constant and delay time to relative gain. For non-square stable systems, an extension from the proposed open-loop approach for square systems is presented and the corresponding pairing procedure is given. No interaction analysis approach is perfect for all systems, so any recommended pairing needs to be examined. An evaluation method is proposed in closed-loop with optimal controllers for each loop and whether the pairing is appropriate can be evaluated through testing if the equivalent relative gain is within defined scope. The advantages and effectiveness of proposed interaction analysis approaches and pairing evaluation method are highlighted via several examples of industrial processes.展开更多
The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational mod...The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.展开更多
The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and t...The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.展开更多
The subject of this research concentrate on indicating psychological and social effects for the Internet on students in Sharjah University/Communication College/in other words the researcher try to know students opini...The subject of this research concentrate on indicating psychological and social effects for the Internet on students in Sharjah University/Communication College/in other words the researcher try to know students opinion and impressions regarding the use of Internet and effect of the same, as well as opinion of positive and negative benefits regarding Internet, especially for the university's students who use Internet repeatedly in their daily routine. This stage marked by facts and characteristics based on search for information, explore the students world, and their expectations for that science. This study is the first in its kind in United Arab Emirates that try to shed light on the social and psychological effects of the lnternet, therefore we pave the way in front of those who administer lnternet and indicate to them guidelines for that to allow decisions maker to be aware about the world around university's student, the world that enjoy less interest for use of Internet at university, and what is the social and psychological effects of the use of Internet. And the study allow providing information and data that several sectors in society need. It draws clear image for the use of Internet at university by the student and whatever social and psychological effects that happened as a result of that use, so it consider as a survey for whom desire to know such information in United Arab Emirates.展开更多
The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system.Based on the finite element method,a soil-structure interaction calculation model was establi...The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system.Based on the finite element method,a soil-structure interaction calculation model was established to analyze the seismic response by changing the structure plane size and choosing different earthquake waves for different soil fields.The results show that when the natural periods of vibration for different structure plane sizes are close,under the same earthquake wave,the total displacement on the top layer of the structure and the foundation rotation displacement decrease with the increase of structure plane size,and the proportion of superstructure elastic selfdeformation displacement to the total displacement increases with the increase of structure plane size.While for different types of sites and seismic waves,under the horizontal and vertical seismic waves,the seismic responses of different plane sizes have a similar change rule.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.51978337,U2039209).
文摘The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.
文摘Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the calculation of internal forces and displacements. Variant three options of the soil models were used as a building supporting structure. In the case of soil model A, the soil was modelled by using of equivalent stiffness values, stemming from the theory of a rigid circular disc on an elastic homogeneous half-space. Non-uniformly modelled vertical stiffness of the soil according to the Boussinesq model was used for model B. Both models A and B are characterised by the "averaged" soil model on the bases of spring constants. Model C was used for the soil better corresponding to its actual composition by the Winkler-Pasternak theory. Model C, where the actual layered soil is considered, is modelled more accurately than for the "averaged" soil of models A and B. The dynamic response of models operating with "averaged" values of rigid and soft soil layers is markedly shifted to the conservative smaller values of internal forces. The building response tbr model C in dynamic displacements is significantly higher than for the both models A and B.
基金Project(KJZH14220)supported by the Achievement Transfer Program of Institutions of Higher Education in Chongqing,China
文摘In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)
文摘This paper presents some new dynamic interaction analysis approaches for square or non-square systems and a pairing evaluation method. For square stable systems, an open-loop approach is proposed, which features the tradeoff between the contributions of response time constant and delay time to relative gain. For non-square stable systems, an extension from the proposed open-loop approach for square systems is presented and the corresponding pairing procedure is given. No interaction analysis approach is perfect for all systems, so any recommended pairing needs to be examined. An evaluation method is proposed in closed-loop with optimal controllers for each loop and whether the pairing is appropriate can be evaluated through testing if the equivalent relative gain is within defined scope. The advantages and effectiveness of proposed interaction analysis approaches and pairing evaluation method are highlighted via several examples of industrial processes.
基金supported by the National Natural Science Foundation of China(No.50179006)Science Development Foundation of Shandong University of Science and Technology(No.05g002).
文摘The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.
基金Supported by the National Natural Science Foundation of China(No.51178310)the Foundation of China Scholarship Council(No.201308120137)
文摘The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.
文摘The subject of this research concentrate on indicating psychological and social effects for the Internet on students in Sharjah University/Communication College/in other words the researcher try to know students opinion and impressions regarding the use of Internet and effect of the same, as well as opinion of positive and negative benefits regarding Internet, especially for the university's students who use Internet repeatedly in their daily routine. This stage marked by facts and characteristics based on search for information, explore the students world, and their expectations for that science. This study is the first in its kind in United Arab Emirates that try to shed light on the social and psychological effects of the lnternet, therefore we pave the way in front of those who administer lnternet and indicate to them guidelines for that to allow decisions maker to be aware about the world around university's student, the world that enjoy less interest for use of Internet at university, and what is the social and psychological effects of the use of Internet. And the study allow providing information and data that several sectors in society need. It draws clear image for the use of Internet at university by the student and whatever social and psychological effects that happened as a result of that use, so it consider as a survey for whom desire to know such information in United Arab Emirates.
基金Supported by National Natural Science Foundation of China(No.51178308 and No.51278335)
文摘The influence of the change of structure plane size on seismic response was studied for a soil-structure interaction system.Based on the finite element method,a soil-structure interaction calculation model was established to analyze the seismic response by changing the structure plane size and choosing different earthquake waves for different soil fields.The results show that when the natural periods of vibration for different structure plane sizes are close,under the same earthquake wave,the total displacement on the top layer of the structure and the foundation rotation displacement decrease with the increase of structure plane size,and the proportion of superstructure elastic selfdeformation displacement to the total displacement increases with the increase of structure plane size.While for different types of sites and seismic waves,under the horizontal and vertical seismic waves,the seismic responses of different plane sizes have a similar change rule.