The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a th...The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the helical equilibrium configuration of DNA in salt solution. In this paper, the Kirchhoff's equations in the presence of interracial traction and the free energy density functions of different configurations are studied. The transition formula of the free energy between B-DNA and Z- DNA is obtained, and the results show that the free energy of the transition is mainly determined by the salt concentra- tion, which agrees well with the experimental data.展开更多
基金Supported by the National Nature Science Foundation of China(No.11372210)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110010)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC28000)
文摘The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the helical equilibrium configuration of DNA in salt solution. In this paper, the Kirchhoff's equations in the presence of interracial traction and the free energy density functions of different configurations are studied. The transition formula of the free energy between B-DNA and Z- DNA is obtained, and the results show that the free energy of the transition is mainly determined by the salt concentra- tion, which agrees well with the experimental data.