期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CELCD和MFVPMCD的智能故障诊断方法研究 被引量:11
1
作者 潘海洋 郑近德 +1 位作者 杨宇 童宝宏 《电子学报》 EI CAS CSCD 北大核心 2017年第3期546-551,共6页
针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和... 针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别. 展开更多
关键词 互相关匹配延拓 局部特征尺度分解 多模型融合 多变量预测模型 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部