A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorpo...A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorporation of Al3+ into CeO2‐MnOx mixed oxides. CeO2‐MnOx, CeO2‐Al2O3, and MnOx‐Al2O3 mixed oxides, and CeO2 were prepared by the same method for comparison. The samples were characterized by XRD, Raman, N2 physisorption, H2‐TPR, XPS, and in situ DRIFTS. The catalytic re‐duction of NO by CO was chosen as a model reaction to evaluate the catalytic performance. The incorporation of a small amount of Al3+into CeO2‐MnOx mixed oxides resulted in a decrease of crys‐tallite size, with the increase of the BET specific surface area and pore volume, as well as the in‐crease of Ce3+and Mn4+. The former benefits good contact between catalyst and reactants, and the latter promotes the adsorption of CO and the desorption, conversion and dissociation of adsorbed NO. All these enhanced the catalytic performance for the NO+CO model reaction. A reaction mecha‐nism was proposed to explain the excellent catalytic performance of CeO2‐MnOx‐Al2O3 catalysts for NO reduction by CO.展开更多
By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.展开更多
Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conver...Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.展开更多
Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurt...Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.展开更多
基金supported by the National Natural Science Foundation of China (21507130)the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (CEK1405)+3 种基金the Open Project Program of Beijing National Laboratory for Molecular Sciences (20140142)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (cstc2014pt-gc20002)~~
文摘A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorporation of Al3+ into CeO2‐MnOx mixed oxides. CeO2‐MnOx, CeO2‐Al2O3, and MnOx‐Al2O3 mixed oxides, and CeO2 were prepared by the same method for comparison. The samples were characterized by XRD, Raman, N2 physisorption, H2‐TPR, XPS, and in situ DRIFTS. The catalytic re‐duction of NO by CO was chosen as a model reaction to evaluate the catalytic performance. The incorporation of a small amount of Al3+into CeO2‐MnOx mixed oxides resulted in a decrease of crys‐tallite size, with the increase of the BET specific surface area and pore volume, as well as the in‐crease of Ce3+and Mn4+. The former benefits good contact between catalyst and reactants, and the latter promotes the adsorption of CO and the desorption, conversion and dissociation of adsorbed NO. All these enhanced the catalytic performance for the NO+CO model reaction. A reaction mecha‐nism was proposed to explain the excellent catalytic performance of CeO2‐MnOx‐Al2O3 catalysts for NO reduction by CO.
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.
基金supported by the National Natural Science Foundation of China (51961135303, 51932007, 21871217 and U1705251)the National Key Research and Development Program of China (2018YFB1502001)Innovative Research Funds of SKLWUT (2017-ZD-4)
文摘Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.
文摘Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.