期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
定义在三个拟互素因子链上的倒数幂矩阵的非奇异性(英文)
1
作者 罗淼 谭千蓉 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期164-168,175,共6页
首先给出定义在三个拟互素因子链上的倒数幂GCD矩阵和倒数幂LCM矩阵的行列式的计算公式,由此证明定义在三个拟互素因子链S上且S的最大公因子属于S时的倒数幂GCD矩阵和倒数幂LCM矩阵是非奇异的.但当构成S的三个因子链不素时,如此的结果... 首先给出定义在三个拟互素因子链上的倒数幂GCD矩阵和倒数幂LCM矩阵的行列式的计算公式,由此证明定义在三个拟互素因子链S上且S的最大公因子属于S时的倒数幂GCD矩阵和倒数幂LCM矩阵是非奇异的.但当构成S的三个因子链不素时,如此的结果不成立. 展开更多
关键词 三个拟互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵
下载PDF
有限个互素因子链上幂GCD矩阵与幂LCM矩阵的行列式的整除性 被引量:5
2
作者 谭千蓉 刘浏 《中国科学:数学》 CSCD 北大核心 2010年第7期641-647,共7页
设S={x1,x2,...,xn}是由n个不同的正整数组成的集合,并设a为正整数.如果一个n阶矩阵的第i行j列元素是S中元素xi和xj的最大公因子的a次幂(xi,xj)a,则称该矩阵为定义在S上的a次幂最大公因子(GCD)矩阵,用(Sa)表示;类似定义a次幂LCM矩阵[Sa]... 设S={x1,x2,...,xn}是由n个不同的正整数组成的集合,并设a为正整数.如果一个n阶矩阵的第i行j列元素是S中元素xi和xj的最大公因子的a次幂(xi,xj)a,则称该矩阵为定义在S上的a次幂最大公因子(GCD)矩阵,用(Sa)表示;类似定义a次幂LCM矩阵[Sa].如果存在{1,2,...,n}上的一个置换σ使得xσ(1)|xσ(2)|···|xσ(n),则称S为一个因子链.如果存在正整数k,使得S=S1∪S2∪···∪Sk,其中每一个Si(1ik)均为一个因子链,并且对所有的1i=jk,Si中的每个元素与Sj中的每个元素互素,则称S由有限个互素因子链构成.本文中,设S由有限个互素的因子链构成,并且1∈S.我们首先给出幂GCD矩阵与幂LCM矩阵的行列式的公式,然后证明:如果a|b,则det(Sa)|det(Sb),det[Sa]|det[Sb],det(Sa)|det[Sb].最后我们指出:如果构成S的有限个因子链不互素,则此结论一般不成立. 展开更多
关键词 整除 互素因子链 最大型因子 幂GCD矩阵 幂LCM矩阵
原文传递
定义在三个互素因子链上的交错幂GCD和交错幂LCM矩阵的整除性 被引量:2
3
作者 李懋 谭千蓉 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期253-257,共5页
设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并且设a为正整数.如果一个n阶矩阵的第i行j列元素定义为(-1)^(i+j)(x_i,x_j)~a,其中(x_i,x_j)_a表示S中的元素x_i与x_j的最大公因子的a次幂,则称这个矩阵((-1)^(i+j)(x_i,x_j)~a)是... 设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并且设a为正整数.如果一个n阶矩阵的第i行j列元素定义为(-1)^(i+j)(x_i,x_j)~a,其中(x_i,x_j)_a表示S中的元素x_i与x_j的最大公因子的a次幂,则称这个矩阵((-1)^(i+j)(x_i,x_j)~a)是定义在S上的a次幂最大公因子(GCD)交错矩阵,简记为(AS^a).类似可定义a次幂最小公倍数(LCM)交错矩阵((-1)^(i+j)[x_i,x_j]~a),简记为[AS^a].在本文中,设S由三个互素的因子链构成,且1∈S.作者证明了如下结果成立:(1)若a|b,则det(AS^a)| det(AS^b),det[AS^a]| det[AS^b],det(AS^a)| det[AS^b];(2)在n阶整数矩阵环M_n(Z)中,若a|b,则(AS^a)|(AS^b),[AS^a]|[AS^b],(AS^a)|[AS^b];若ab,则(AS^a)(AS^b),[AS^a][AS^b],(AS^a)[AS^b]. 展开更多
关键词 整除 三个互素因子链 交错幂GCD矩阵 交错幂LCM矩阵
原文传递
有限个互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的非奇异性
4
作者 谭千蓉 林宗兵 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期519-522,共4页
设S={x1,x2,…,xn}是一个正整数组成的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素为1(xi,xj)a,称它是定义在集合S上的倒数幂GCD矩阵,用(1Sa)表示.类似可定义倒数幂LCM矩阵[1Sa].作者得到定义在有限个互素因子链上的倒数幂... 设S={x1,x2,…,xn}是一个正整数组成的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素为1(xi,xj)a,称它是定义在集合S上的倒数幂GCD矩阵,用(1Sa)表示.类似可定义倒数幂LCM矩阵[1Sa].作者得到定义在有限个互素因子链上的倒数幂最大公因子矩阵与倒数幂最小公倍数矩阵的行列式计算公式,并得出它们均是非奇异的. 展开更多
关键词 有限个互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵
原文传递
两个拟互素因子链上倒数幂GCD与倒数幂LCM矩阵的非奇异性
5
作者 林宗兵 谭千蓉 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期965-969,共5页
设S={x_1,x_2,…,x_n}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(x_i,x_j)~a,其中(x_i,x_j)~a表示S中的元素x_1与x_j的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/S^a)表示.... 设S={x_1,x_2,…,x_n}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(x_i,x_j)~a,其中(x_i,x_j)~a表示S中的元素x_1与x_j的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/S^a)表示.类似可定义倒数幂LCM矩阵[1/S^a].作者得到了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的行列式公式,并由此证明了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵均是非奇异的. 展开更多
关键词 互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部