Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic ...Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.展开更多
With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in...With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in telecommunication network over the past few years. In this paper, we study the network traffic pattern of the aggregate traffic and of specific application traffic, especially the popular applications such as P2P, VoIP that contribute most network traffic. Our study verified that majority Internet backbone traffic is contributed by a small portion of users and a power function can be used to approximate the contribution of each user to the overall traffic. We show that P2P applications are the dominant traffic contributor in current Internet Backbone of China. In addition, we selectively present the traffic pattern of different applications in detail.展开更多
基金This paper was partially supported by the National Natural Science Foundation of China under Crant No. 61072061111 Project of China under Crant No. B08004 the Fundamental Research Funds for the Central Universities under Grant No. 2009RC0122. References
文摘Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.
文摘With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in telecommunication network over the past few years. In this paper, we study the network traffic pattern of the aggregate traffic and of specific application traffic, especially the popular applications such as P2P, VoIP that contribute most network traffic. Our study verified that majority Internet backbone traffic is contributed by a small portion of users and a power function can be used to approximate the contribution of each user to the overall traffic. We show that P2P applications are the dominant traffic contributor in current Internet Backbone of China. In addition, we selectively present the traffic pattern of different applications in detail.