本研究构建了以丁酸为唯一碳源的厌氧消化反应器,利用16SrRNA基因测序技术分析氯四环素(Chlortetracycline,CTC)单独抑制及CTC与颗粒活性炭(Granular active carbon,GAC)协同作用下,互营丁酸氧化微生物群落结构的动态变化,探究环境胁迫...本研究构建了以丁酸为唯一碳源的厌氧消化反应器,利用16SrRNA基因测序技术分析氯四环素(Chlortetracycline,CTC)单独抑制及CTC与颗粒活性炭(Granular active carbon,GAC)协同作用下,互营丁酸氧化微生物群落结构的动态变化,探究环境胁迫下微生物之间的相互作用及其对CTC及CTC和GAC协同作用的响应。结果表明,原始反应器群落中,已知的互营丁酸氧化菌Syntrophomonas(11.6%)和乙酸营养型产甲烷古菌Methanosaeta(48.5%)分别在细菌和古菌群落中占主导优势。添加40mg/L和50mg/LCTC条件下,甲烷产量分别降低40.4%和49.3%。Syntrophomonas对CTC表现出耐受性,但与其呈正相关联系的细菌(如unclassified Firmicutes和unclassified Comamonadaceae)以及乙酸氧化菌Tepidanaerobacter活性被CTC明显抑制,从而影响丁酸降解率,同时造成代谢产物积累,导致产甲烷量降低。单独添加GAC以及在40mg/L和50mg/LCTC抑制下添加GAC,甲烷产量分别降低2.9%、48.5%和64.7%。共现网络分析结果显示,添加GAC明显增强了Geobacter以及与其呈正相关联系的细菌(Azonexus等)的活性。而产甲烷古菌Methanosaeta和Methanoculleus与Azonexus等大部分细菌呈负相关,因此,添加GAC可能间接影响了产甲烷古菌的活性。展开更多
为考察接种牛粪菌系对稻秸的发酵特性和固液相菌群的影响,进行了批次试验。结果表明:牛粪菌系接种体系分别在第4天和第38天时出现了两个产甲烷峰,稻秸甲烷产率(以VS计)达269.32 m L/g,比对照体系提高了35%。纤维素酶和木聚糖酶活性分别...为考察接种牛粪菌系对稻秸的发酵特性和固液相菌群的影响,进行了批次试验。结果表明:牛粪菌系接种体系分别在第4天和第38天时出现了两个产甲烷峰,稻秸甲烷产率(以VS计)达269.32 m L/g,比对照体系提高了35%。纤维素酶和木聚糖酶活性分别达18.82、214.55 U/m L,使得干基质量降解率达41.79%。发酵结束后,细菌和甲烷菌群结构变化明显,稻秸固相上瘤胃球菌属(Ruminococcus)和纤维杆菌属(Fibrobacter)等纤维素水解菌相对丰度提高,分别与嗜氢型甲烷短杆菌属(Methanobrevibacter)和甲烷八叠球菌属(Methanosarcina)存在协同代谢,是牛粪菌系接种体系稻秸高效水解产甲烷的关键。和对照体系中存在的互营杆菌属(Syntrophobacter)和消化肠状菌属(Pelotomaculum)不同,接种体系的氨基杆菌属(Aminobacterium)和互营单胞菌属(Syntrophomonas)等互营氧化菌降低了丙酸和丁酸浓度,嗜乙酸产甲烷途径占主导优势,提高了厌氧发酵的效率。展开更多
基于生物炭对互营氧化过程的潜在促进机理,针对严重酸化的中温餐厨垃圾与污泥共发酵反应器(TVFA高达59.7 g COD/L),通过批次实验考察了生物炭促进酸化反应器中过量积累的VFAs降解及发酵系统快速恢复的可能性。结果表明:20 g/L生物炭能...基于生物炭对互营氧化过程的潜在促进机理,针对严重酸化的中温餐厨垃圾与污泥共发酵反应器(TVFA高达59.7 g COD/L),通过批次实验考察了生物炭促进酸化反应器中过量积累的VFAs降解及发酵系统快速恢复的可能性。结果表明:20 g/L生物炭能够使酸化系统中大量积累的VFAs在20 d内开始降解。而未添加生物炭的空白对照组,直至60 d后批次实验结束,仍未有恢复迹象。随后,将同等投加量的生物炭投加到实际酸化反应器中,发现反应器的pH值由6.7迅速上升至7.3,积累的VFAs在10 d内出现明显下降。可见,生物炭可以有效促进过量积累VFAs的快速降解,这为实际厌氧发酵系统酸化后快速恢复提供了技术支持。展开更多
【目的】研究不同温度条件下的石油烃降解产甲烷菌系中是否存在乙酸互营氧化产甲烷代谢途径。【方法】以3个不同温度条件的正十六烷烃降解产甲烷菌系Y15(15℃)、M82(35℃)和SK(55℃)作为接种物,通过乙酸喂养实验、并添加乙酸营养型产甲...【目的】研究不同温度条件下的石油烃降解产甲烷菌系中是否存在乙酸互营氧化产甲烷代谢途径。【方法】以3个不同温度条件的正十六烷烃降解产甲烷菌系Y15(15℃)、M82(35℃)和SK(55℃)作为接种物,通过乙酸喂养实验、并添加乙酸营养型产甲烷古菌的选择性抑制剂NH4Cl和CH3F,结合末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RFLP)和克隆文库技术,分析乙酸产甲烷潜力及产甲烷古菌群落的演替趋势,推测产甲烷代谢途径的变化趋势。【结果】无论是否添加NH4Cl和CH3F,这3个菌系都可以利用乙酸生长并产生甲烷,但是添加NH4Cl和CH3F后产甲烷延滞期增加,最大比甲烷增长速率降低;只添加乙酸后,3个不同温度的菌系的古菌群落主要由乙酸营养型产甲烷古菌甲烷鬃毛菌属(Methanosaeta)组成,其丰度分别为92.8±1.4%、97.3±2.4%和82.8±9.0%;当添加选择性抑制剂NH4Cl,3个菌系中的Methanosaeta的丰度分别变为98.5±0.7%、87.4±4.8%和6.1±8.6%,中温菌系M82中氢营养型产甲烷古菌甲烷袋装菌属(Methanoculleus)的相对丰度增加到12.6±4.0%,高温菌系SK中另一类氢营养型产甲烷古菌甲烷热杆菌属(Methanothermobacter)增至84.3±1.5%;当添加选择性抑制剂CH3F,Methanosaeta丰度分别降至77.1±14.5%,86.4±6.1%和35.8±7.8%,低温菌系Y15中的甲烷八叠球菌属(Methanosarcina)增高(15.7±21%),这类产甲烷古菌具有多种产甲烷代谢途径,M82中Methanoculleus丰度上升到13.6±13.1%,SK中Methanothermobacter丰度增大到48.5±11.2%。【结论】在低温条件下,菌系Y15可能主要通过乙酸裂解完成产甲烷代谢,在中高温条件下,菌系M82和SK中可能存在乙酸互营氧化产甲烷代谢途径,并且甲烷的产生分别通过不同种群的氢营养型产甲烷古菌来完成。展开更多
文摘本研究构建了以丁酸为唯一碳源的厌氧消化反应器,利用16SrRNA基因测序技术分析氯四环素(Chlortetracycline,CTC)单独抑制及CTC与颗粒活性炭(Granular active carbon,GAC)协同作用下,互营丁酸氧化微生物群落结构的动态变化,探究环境胁迫下微生物之间的相互作用及其对CTC及CTC和GAC协同作用的响应。结果表明,原始反应器群落中,已知的互营丁酸氧化菌Syntrophomonas(11.6%)和乙酸营养型产甲烷古菌Methanosaeta(48.5%)分别在细菌和古菌群落中占主导优势。添加40mg/L和50mg/LCTC条件下,甲烷产量分别降低40.4%和49.3%。Syntrophomonas对CTC表现出耐受性,但与其呈正相关联系的细菌(如unclassified Firmicutes和unclassified Comamonadaceae)以及乙酸氧化菌Tepidanaerobacter活性被CTC明显抑制,从而影响丁酸降解率,同时造成代谢产物积累,导致产甲烷量降低。单独添加GAC以及在40mg/L和50mg/LCTC抑制下添加GAC,甲烷产量分别降低2.9%、48.5%和64.7%。共现网络分析结果显示,添加GAC明显增强了Geobacter以及与其呈正相关联系的细菌(Azonexus等)的活性。而产甲烷古菌Methanosaeta和Methanoculleus与Azonexus等大部分细菌呈负相关,因此,添加GAC可能间接影响了产甲烷古菌的活性。
文摘为考察接种牛粪菌系对稻秸的发酵特性和固液相菌群的影响,进行了批次试验。结果表明:牛粪菌系接种体系分别在第4天和第38天时出现了两个产甲烷峰,稻秸甲烷产率(以VS计)达269.32 m L/g,比对照体系提高了35%。纤维素酶和木聚糖酶活性分别达18.82、214.55 U/m L,使得干基质量降解率达41.79%。发酵结束后,细菌和甲烷菌群结构变化明显,稻秸固相上瘤胃球菌属(Ruminococcus)和纤维杆菌属(Fibrobacter)等纤维素水解菌相对丰度提高,分别与嗜氢型甲烷短杆菌属(Methanobrevibacter)和甲烷八叠球菌属(Methanosarcina)存在协同代谢,是牛粪菌系接种体系稻秸高效水解产甲烷的关键。和对照体系中存在的互营杆菌属(Syntrophobacter)和消化肠状菌属(Pelotomaculum)不同,接种体系的氨基杆菌属(Aminobacterium)和互营单胞菌属(Syntrophomonas)等互营氧化菌降低了丙酸和丁酸浓度,嗜乙酸产甲烷途径占主导优势,提高了厌氧发酵的效率。
文摘【目的】研究不同温度条件下的石油烃降解产甲烷菌系中是否存在乙酸互营氧化产甲烷代谢途径。【方法】以3个不同温度条件的正十六烷烃降解产甲烷菌系Y15(15℃)、M82(35℃)和SK(55℃)作为接种物,通过乙酸喂养实验、并添加乙酸营养型产甲烷古菌的选择性抑制剂NH4Cl和CH3F,结合末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RFLP)和克隆文库技术,分析乙酸产甲烷潜力及产甲烷古菌群落的演替趋势,推测产甲烷代谢途径的变化趋势。【结果】无论是否添加NH4Cl和CH3F,这3个菌系都可以利用乙酸生长并产生甲烷,但是添加NH4Cl和CH3F后产甲烷延滞期增加,最大比甲烷增长速率降低;只添加乙酸后,3个不同温度的菌系的古菌群落主要由乙酸营养型产甲烷古菌甲烷鬃毛菌属(Methanosaeta)组成,其丰度分别为92.8±1.4%、97.3±2.4%和82.8±9.0%;当添加选择性抑制剂NH4Cl,3个菌系中的Methanosaeta的丰度分别变为98.5±0.7%、87.4±4.8%和6.1±8.6%,中温菌系M82中氢营养型产甲烷古菌甲烷袋装菌属(Methanoculleus)的相对丰度增加到12.6±4.0%,高温菌系SK中另一类氢营养型产甲烷古菌甲烷热杆菌属(Methanothermobacter)增至84.3±1.5%;当添加选择性抑制剂CH3F,Methanosaeta丰度分别降至77.1±14.5%,86.4±6.1%和35.8±7.8%,低温菌系Y15中的甲烷八叠球菌属(Methanosarcina)增高(15.7±21%),这类产甲烷古菌具有多种产甲烷代谢途径,M82中Methanoculleus丰度上升到13.6±13.1%,SK中Methanothermobacter丰度增大到48.5±11.2%。【结论】在低温条件下,菌系Y15可能主要通过乙酸裂解完成产甲烷代谢,在中高温条件下,菌系M82和SK中可能存在乙酸互营氧化产甲烷代谢途径,并且甲烷的产生分别通过不同种群的氢营养型产甲烷古菌来完成。