针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toepl...针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。展开更多
文摘针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971217,61971218)the Natural Science Foundation of Jiangsu Province(No.BK20200444)the National Key Research and Development Project(No.2020YFB1807602)。
文摘电力系统中电力电子产生的谐波数量不断增加,谐波问题是一个重要的问题。本文提出了一种改进的互质采样(Coprime sampling,CS)方案,用于谐波和间谐波频率估计。所提方案使用稀疏采样来降低采样率,并将其与现代频谱估计算法相结合。特别是,使用分段互质采样(Segmented coprime sampling,SCS)方法,然后使用求根多重信号分类(Root-multiple signal classification,root-MUSIC)算法代替常用的MUSIC算法可以减少计算工作量并获得准确的频率估计。仿真结果表明,该方法在估计精度上优于传统的均匀采样(Uniform sampling,US)方法。