When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To so...When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To solve em, data reconstruction is often needed. Curvelet transform sparsity constrained inversion was widely used in the seismic data reconstruction field for its anisotropic, muhiscale and local basis. However, for the downhole ease, because the number of sampling point is mueh larger than the number of the sensors, the advantage of the cnrvelet basis can't perform very well. To mitigate the problem, the method that joints spline and curvlet-based compressive sensing was proposed. First, we applied the spline interpolation to the first arri- vals that to be interpolated. And the events are moved to a certain direction, such as horizontal, which can be represented by the curvelet basis sparsely. Under the spasity condition, curvelet-based compressive sensing was applied for the data, and directional filter was also used to mute the near vertical noises. After that, the events were shifted to the spline line to finish the interpolation workflow. The method was applied to a synthetic mod- el, and better result was presented than using curvelet transform interpolation directly. We applied the method to a real dataset, a mieroseismic downhole observation field data in Nanyang, using Kirchhoff migration method to image the microseimic event. Compared with the origin data, artifacts were suppressed on a certain degree.展开更多
Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the re...Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the resistivity of subsurface materials. Electrical imaging is an appropriate survey technique for areas with complex geology where the use of resistivity sounding and other techniques are unsuitable to provide detailed subsurface information. The purpose of electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. The field survey was conducted along four profiles which provide a continuous coverage of the resistivity imaging below surface. The surface soil material is mainly clayey silt. The results showed that the layers associated with the low resistivities (Ωm) are located at depth ranging from 2 m to 28 m. This low resistivity values are associated with zone of water saturated weathered layer and fractures. The results showed that the thickness of residual soil is about 0.5-2.55 m. Borehole data indicated that the depth of bedrock is about 10 m and the groundwater level is ranging from 8.73 m to 8.54 m.展开更多
基金Supported by Project of the National Natural Science Foundation of China(No.41274055)
文摘When cause of the aliasing lack probl using borehole sensors and microseimic events to image, spatial aliasing often occurred be- of sensors underground and the distance between the sensors which were too large. To solve em, data reconstruction is often needed. Curvelet transform sparsity constrained inversion was widely used in the seismic data reconstruction field for its anisotropic, muhiscale and local basis. However, for the downhole ease, because the number of sampling point is mueh larger than the number of the sensors, the advantage of the cnrvelet basis can't perform very well. To mitigate the problem, the method that joints spline and curvlet-based compressive sensing was proposed. First, we applied the spline interpolation to the first arri- vals that to be interpolated. And the events are moved to a certain direction, such as horizontal, which can be represented by the curvelet basis sparsely. Under the spasity condition, curvelet-based compressive sensing was applied for the data, and directional filter was also used to mute the near vertical noises. After that, the events were shifted to the spline line to finish the interpolation workflow. The method was applied to a synthetic mod- el, and better result was presented than using curvelet transform interpolation directly. We applied the method to a real dataset, a mieroseismic downhole observation field data in Nanyang, using Kirchhoff migration method to image the microseimic event. Compared with the origin data, artifacts were suppressed on a certain degree.
文摘Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the resistivity of subsurface materials. Electrical imaging is an appropriate survey technique for areas with complex geology where the use of resistivity sounding and other techniques are unsuitable to provide detailed subsurface information. The purpose of electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. The field survey was conducted along four profiles which provide a continuous coverage of the resistivity imaging below surface. The surface soil material is mainly clayey silt. The results showed that the layers associated with the low resistivities (Ωm) are located at depth ranging from 2 m to 28 m. This low resistivity values are associated with zone of water saturated weathered layer and fractures. The results showed that the thickness of residual soil is about 0.5-2.55 m. Borehole data indicated that the depth of bedrock is about 10 m and the groundwater level is ranging from 8.73 m to 8.54 m.