According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mi...According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.展开更多
In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula fo...In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.展开更多
The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been r...The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts.展开更多
基金Supported by the International Science and Technology Cooperation Projects(2009DFA71840)Basic Research Business Projects of China Academy of Safety Science and Technology(2009JBKY07)
文摘According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.
文摘In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.
文摘The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts.