We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagne...Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagnetic profiling (MM-VEP) technique for surface-to-borehole electromagnetic surveying. Based on the difference in conductivities between reservoirs with different concentrations of oil and water, MM-VEP can be used to monitor reservoirs as they are injected with water. The MM-VEP response in five azimuth planes is modeled with three-dimensional (3D) integral equation calculations. The progress of waterflooding in four stages for enhanced oil recovery is shown to be indicated by field anomalies MM-VEP caused by variations in the reservoir resistivity. Numerical modeling demonstrates that MM-VEP measurements provides enough quantitative information from an underground reservoir to accurately detect oil deposits and monitor the progress of waterflooding.展开更多
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri...In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金supported by the National Science and Technology Major Project(No.2011ZX05019-007)National Natural Science Foundation of China(No.41604097)+1 种基金China Postdoctoral Science Foundation(No.2016M592611)Project(Nos.002401003503 and 002401003514)from Guilin University of Technology
文摘Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagnetic profiling (MM-VEP) technique for surface-to-borehole electromagnetic surveying. Based on the difference in conductivities between reservoirs with different concentrations of oil and water, MM-VEP can be used to monitor reservoirs as they are injected with water. The MM-VEP response in five azimuth planes is modeled with three-dimensional (3D) integral equation calculations. The progress of waterflooding in four stages for enhanced oil recovery is shown to be indicated by field anomalies MM-VEP caused by variations in the reservoir resistivity. Numerical modeling demonstrates that MM-VEP measurements provides enough quantitative information from an underground reservoir to accurately detect oil deposits and monitor the progress of waterflooding.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos..42030806,41774125,41804098,41904104)the Key National Research Project of China(Grant No.2018YFC0603300).
文摘In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.