-
题名多分辨率低秩导向滤波的热红外图像空间融合
- 1
-
-
作者
苗馨远
张晔
张钧萍
-
机构
哈尔滨工业大学电子与信息工程学院
-
出处
《遥感学报》
EI
CSCD
北大核心
2021年第11期2255-2269,共15页
-
基金
国家自然科学基金(编号:61871150)。
-
文摘
热红外遥感图像由于其特定的成像方式,包含目标特有的发射率及温度等特征。然而,热红外遥感图像较低的空间分辨率却限制了其广泛应用。随着遥感技术的发展,同一区域获得的多源遥感图像可以提供更为完备的目标信息,使得利用多源融合技术实现热红外图像空间分辨率增强与亚像素级特征提取成为可能。为此,本文提出了一种基于多分辨率自适应低秩表达与残差信息迁移的热红外图像空间超分辨算法,该算法通过可见光与热红外图像融合的方式实现热红外图像空间特性的自适应融合增强。本文算法优势主要体现在以下几个方面:(1)基于多分辨率的超像素分割,使用超像素块代替传统的方块作为低秩恢复单元,自适应地调整单元内空间特性以保持单元内地物类型的稳定并抑制结构性噪声;(2)通过构建导向线性滤波器,在保护热红外图像光谱信息的前提下,实现可见光图像精细空间特征向热红外图像的迁移;(3)在低分辨层建立增强热红外图像残差与可见光图像残差之间关联并迁移至高分辨层,在保证超分辨图像细节信息的前提下,实现热红外图像空间超分辨。为了验证算法的有效性,本文采用2014年IGARSS数据融合竞赛提供的可见光与热红外实验数据进行实验,并与融合竞赛中表现最为优异的监督图特征融合方法进行比较,并从温度反演精度以及分类精度两个方面评价超分辨效果。实验结果表明,本文提出的方法其噪声抑制效果、空间平滑效果、边缘锐化效果更为优异,超分辨热红外图像有着更为精细的空间信息,并且对于不同区域类型均能较好的保护热红外图像光谱信息。对于不同地物类型,融合超分辨图像有较高的亚像素温度反演精度以及更高的分类精度,其温度反演误差小于1 K,总体分类精度较原热红外图像提升20%以上。
-
关键词
亚像素温度反演
可见光、热红外图像融合
导向滤波器
多分辨率空间自适应低秩表达
超像素分割
-
Keywords
subpixel temperature retrieval
visible and thermal infrared image fusion
guided filter
multi-resolution self-adaption low-rank representation
super-pixel segmentation
-
分类号
TP751
[自动化与计算机技术—检测技术与自动化装置]
-