压缩感知是一种亚奈奎斯特率信息采样方法。基于压缩感知的符号检测方法通常先将亚奈奎斯特率样本重构为奈奎斯特率样本,然后再依据传统符号检测的原理检测接收符号。本文针对基于重构的压缩感知符号检测方法采样率过高的问题,研究广义...压缩感知是一种亚奈奎斯特率信息采样方法。基于压缩感知的符号检测方法通常先将亚奈奎斯特率样本重构为奈奎斯特率样本,然后再依据传统符号检测的原理检测接收符号。本文针对基于重构的压缩感知符号检测方法采样率过高的问题,研究广义似然比检测和信息采样样本之间的关系,提出了一种不需要重构奈奎斯特率样本的压缩检测方法。该方法首先通过双通道时延结构分离接收信号的参考部分和信息符号部分,然后依据两部分信号的稀疏相关特性,对亚奈奎斯特率接收符号进行检测。实验结果表明本文提出的方法能够有效地抵抗多径衰弱和符号间干扰(Inter Symbol Interference,ISI)。展开更多
有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导...有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导致FRI重构失败.本文依据波形再生的原理,提出了一种基于长短时记忆(Long and Short-Term Memory,LSTM)自动编码器的FRI重构方法.该方法利用LSTM自动编码器取代FRI采样系统中的采样核函数,通过离线训练获取畸变信号的未知波形结构,从而将波形序列投影为狄拉克特征序列,实现了波形畸变信号的FRI采样及重构.结果表明,本文的方法可以借助经典的零化滤波器有效地重构由于多径效应而发生畸变的FRI波形信号.展开更多
文摘调制宽带转换器(modulated wideband converter,MWC)采样方法针对稀疏宽带信号实现了可精确重构的亚奈奎斯特采样,缓解了采样率高的压力。然而现有重构算法所需的最小通道数和采样率与理论下限值仍存在较大差距。针对该问题基于奇异值分解(singular value decomposition,SVD)和多信号分类(multiple signal classification,MUSIC)思想提出一种间接重构算法。该算法首先利用SVD思想通过降维变换在不改变未知矩阵支撑集的前提下将MWC采样模型转化为低维的多测量向量(multiple measurement vector,MMV)问题,然后利用MUSIC思想获取支撑集,最后通过伪逆实现重构。实验结果表明,与传统重构算法相比,该算法可以进一步降低采样率要求,在较少的通道数下实现高概率重构,在一定条件下,重构所需的最低通道数已接近理论下限值。
文摘压缩感知是一种亚奈奎斯特率信息采样方法。基于压缩感知的符号检测方法通常先将亚奈奎斯特率样本重构为奈奎斯特率样本,然后再依据传统符号检测的原理检测接收符号。本文针对基于重构的压缩感知符号检测方法采样率过高的问题,研究广义似然比检测和信息采样样本之间的关系,提出了一种不需要重构奈奎斯特率样本的压缩检测方法。该方法首先通过双通道时延结构分离接收信号的参考部分和信息符号部分,然后依据两部分信号的稀疏相关特性,对亚奈奎斯特率接收符号进行检测。实验结果表明本文提出的方法能够有效地抵抗多径衰弱和符号间干扰(Inter Symbol Interference,ISI)。
文摘有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导致FRI重构失败.本文依据波形再生的原理,提出了一种基于长短时记忆(Long and Short-Term Memory,LSTM)自动编码器的FRI重构方法.该方法利用LSTM自动编码器取代FRI采样系统中的采样核函数,通过离线训练获取畸变信号的未知波形结构,从而将波形序列投影为狄拉克特征序列,实现了波形畸变信号的FRI采样及重构.结果表明,本文的方法可以借助经典的零化滤波器有效地重构由于多径效应而发生畸变的FRI波形信号.