In this study, the East Asian summer climate changes under the 1.5 ℃ global warming (1.5 GW) target in 30 simulations derived from 15 coupled models within the Coupled Model Intercomparison Program phase 5 (CMIP5...In this study, the East Asian summer climate changes under the 1.5 ℃ global warming (1.5 GW) target in 30 simulations derived from 15 coupled models within the Coupled Model Intercomparison Program phase 5 (CMIP5) are examined. Compared with the current summer climate (1975-2005), both surface air temperature and precipitation increase significantly over the East Asian continent during the 1.5 GW period (average period 2021-2051). In northeastern China this is particularly pronounced with regional averaged precipitation increases of more than 7.2%, which is greater than that for the whole East Asian continent (approximately 4.2%). Due to stronger enhancement of precipitation north of 40°N, the leading empirical orthogonal function (EOF) mode of summer precipitation over the East Asian continent changes from tripolar-like mode to dipole mode. As there is stronger surface warming over the East Asian continent than that over surrounding ocean, the land-sea thermal contrast is enhanced during the 1.5 GW period. As a result, the monsoon circulation in the lower troposphere is significantly strengthened, which causes the increased summer precipitation over the East Asian continent. In addition, larger interannual variabilities of East Asian summer monsoon circulation and associated precipitation are also suggested for the 1.5 GW period.展开更多
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p...A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.展开更多
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO streng...The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.展开更多
The pathway of the East Asian winter monsoon(EAWM) that usually leads to the out-of-phase pattern of surface air temperature between northern and southern East Asia is an important feature in the variability of the EA...The pathway of the East Asian winter monsoon(EAWM) that usually leads to the out-of-phase pattern of surface air temperature between northern and southern East Asia is an important feature in the variability of the EAWM besides its strength.Using the European Centre for Medium-Range Weather Forecasts 40-year(ERA40) reanalysis dataset,this study investigates the pathway-related stationary wave activity to explore the mechanism of the interannual variations in the EAWM pathway.It reveals that when the southern pathway of the EAWM is strong,the phase of the climatological stationary wave tends to be shifted westward significantly in both the horizontal and vertical directions by an anomalous wavenumber 2 pattern at mid-latitudes,whereas the changes are relatively small in the subtropics.The horizontal changes in the stationary wave phase facilitate a north-south-oriented East Asian trough in the middle troposphere that eventually produces the strong southern pathway of the EAWM.The vertical changes in the stationary wave,in contrast,feature a westward-tilted phase line with height over the North Pacific,indicating enhanced upward propagation of waves into the stratosphere.This result suggests that the phase of stationary waves at mid-latitudes dominate the interannual variations in the EAWM pathway.Moreover,it supports our previous interpretation of the possible role of the North Pacific sea surface temperature(SST) in the EAWM pathway variability.It also implies that the excitation of anomalous mid-latitude stationary waves may be the key in the response of the EAWM pathway to the North Pacific SST.展开更多
In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China,interseasonal pentad characteristics of the EASWJ and their relation to summer precipita...In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China,interseasonal pentad characteristics of the EASWJ and their relation to summer precipitation in East China are analyzed with the daily reanalysis data provided by National Centers for Environmental Prediction (NCEP,USA) and daily precipitation data from 714 Chinese meteorological stations during the period 1960-2009.In addition,the daily evolution of the EASWJ and objective quantification of the EASWJ are investigated for the Meiyu season over the middle and lower reaches of the Yangtze River valley.It is found that the EASWJ and summer precipitation bands in East China move simultaneously.Especially,the stationary state and northward shift of the EASWJ are closely associated with the beginning,ending and stabilization of the annually first raining season in South China and Meiyu over these reaches.Analysis on the characteristics of the EASWJ in typical (atypical) Meiyu years over these reaches shows that the EASWJ swings steadily around its climatological position in meridional orientation (with large amplitude).Numerical experiments on an example in 2005 shows that indexes proposed in this study can depict the EASWJ well and should be valuable for application in the operation.展开更多
This study examines the wave trains at 500 hPa occurring in East Asian summer by using the Empirical Orthogonal Function (EOF) analysis as a diagnostic tool. The results are summarized as follows: (1) A wave trai...This study examines the wave trains at 500 hPa occurring in East Asian summer by using the Empirical Orthogonal Function (EOF) analysis as a diagnostic tool. The results are summarized as follows: (1) A wave train pattern (OKJ pattern) originating from the upstream areas of the Sea of Okhotsk to the subtropical regions could display its strong signal in early and middle summer. The OKJ pattern is clearly recognized in the first EOF component in Eurasia. (2) The other wave train pattern originating fi'om the Philippines via Japan to North America (the P-J pattern) shows quite strong signals in the whole summer. Although the P-J pattern is described as the second EOF component around the area from East Asia to Northeast Pacific Ocean, the variance contribution is the same as that of OKJ pattern in the first EOF component. (3) The composite analyses indicate that the OKJ and P-J wave trains could coexist to some extents.展开更多
The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.Th...The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.The results show that anomalous SST warming in the Kuroshio Extension in winter causes the enhancement and northward movement of the EASM.The monsoon indexes for East Asian summer monsoon and land-sea thermal difference,which characterize the intensity of the EASM,show an obvious increase during the onset period of the EASM.Moreover,the land-sea thermal difference is more sensitive to warmer SST.Low-level southwesterly monsoon is clearly strengthened meanwhile westerly flows north (south) of the subtropical westerly jet axis are strengthened (weakened) in northern China,South China Sea,and the Western Pacific Ocean to the east of the Philippines.While there is an obvious decrease in precipitation over the Japanese archipelago and adjacent oceans and over the area from the south of the Yangtze River in eastern China to the Qinling Mountains in southern China,precipitation increases notably in northern China,the South China Sea,the East China Sea,the Yellow Sea,and the Western Pacific to the east of the Philippines.North China is the key area where the response of the EASM to the SST anomalous warming in the Kuroshio Extension is prominent.The surface air temperature shows a warming trend.The warming in the entire troposphere between 30oN and 50oN increases the land-sea thermal contrast,which plays an important role in the enhancement of the EASM.Atmospheric circulation and precipitation anomalies in China and its adjacent regions have a close relationship with the enhancement of the Western Pacific subtropical high and its northward extension.展开更多
This article explains how modern European travelers, particularly European women adventurers, described East Asia. Travel writings that are expected to be truthful are not free from travelers' own personal, cultural,...This article explains how modern European travelers, particularly European women adventurers, described East Asia. Travel writings that are expected to be truthful are not free from travelers' own personal, cultural, social, and political experiences and perceptions. At the turn of the 19th century, Europe was dominated by colonial discourse based on Western-centered textualized or imaginary knowledge of "the Orient''1. The imaginary texts affected European travelers. In turn, their travel writings helped substantiate and reinforce the texts. European women travelers, who were in a relatively disadvantageous situation at home, enjoyed going beyond the sexual boundaries imposed on them at home by using their assumed racial superiority in the Orient. However, their marginal position in Western society helped them ponder their own understanding of other peoples and cultures, of themselves, and of their home societies. This article traces not only the surface discourse of travelogues on East Asia, particularly on Korea, but also travel writers' inner worlds, focusing on differences between men and women.展开更多
In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to inv...In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.展开更多
The roles of subduction of the Pacific plate and the big mantle wedge(BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regardi...The roles of subduction of the Pacific plate and the big mantle wedge(BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following.(1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe_2O_3~T and TiO_2 contents, HIMU-like trace element composition and relatively low ^(206)Pb/^(204)Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe_2O_3~T and TiO_2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1-and EM2-type components.(2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone,whereas EM1 and EM2 components are from the shallow mantle.(3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at <100 km and^300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H_2O and CO_2 decrease gradually from bottom to top of the BMW.(4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.展开更多
A 400-mm-long stalagmite from Tangshan Cave, Nanjing has beenanalyzed by a high-precision TIMS-U series dating method and also determined for oxygen and carbon stable isotopic compositions. The results provided a high...A 400-mm-long stalagmite from Tangshan Cave, Nanjing has beenanalyzed by a high-precision TIMS-U series dating method and also determined for oxygen and carbon stable isotopic compositions. The results provided a high-resolution paleoclimate record for eastern China during a time interval (from 54 000 to 19 000 aBP) of the last glaciation. The continuous record of oxygen-18 variations in the stalagmite, indicating a precipitation history of the East Asian monsoon, shows not only signals of the Heinrich events, but also the Dansgaard-Oeschger cycles which are first found in the last glacial climate record of the East Asian monsoon area. Although the stalagmite-based climatic signals match well with the GRIP ice core record, some differences between the two re-cords can be recognized: (1) The last glacial climate changes in eastern China exhibited a long-term remarkably cooling trend, superimposed on which were four successive Bond’s cycles illus-trated by the δ18O curve. This strong cooling tendency may be an effect of the strong summer mon-soon event during the MIS 3 over the Tibetan Plateau. (2) There exist some phase differences of 1000—2000 years between the cooling events in the stalagmite-based climate signal and the GRIP ice core record. Such differences should be further verified by calibrations of multiple dating meth-ods.展开更多
The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon...The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon. In this study, 2181 samples from the Changwu and Xifeng loess sections are analyzed and two high-resolution paleo-weathering timeseries of the last 1.2 Ma are generated, using the ratio of CBD extractable free Fe2O3 (FeD) versus the total iron (FeT). This new index is compared with micromorphological features, low-frequency magnetic susceptibility, frequency-dependent magnetic susceptibility, and the Rb/Sr ratio[5,6]. The results suggest that the FeD/FeT ratio is able to better reflect the degree of soil development. Since the chemical weather-ing of loess in the Loess Plateau region mainly depends upon the summer precipitation and tem-perature under modern climate condition, which are closely associated with strength of summer monsoon, and the chemical weathering intensity of loess primarily reflects the variations of the summer monsoon circulation.展开更多
A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for p...A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.展开更多
The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GC...The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GCA before the uplift of the plateau is lack of direct evidences. Based on the knowability of desert, a section recording wind directions across the Cretaceous northern hemisphere mid-low latitude desert belt is measured and the pattern of the GCA in the Cretaceous is revealed. The result shows that the eastern Asia was really controlled by the planetary circulation before the uplift of the plateau, i.e. westerlies in the north and northeast trades in the south. The convert belt between westerlies and trades had drifted northwards and southwards. The possibility of existence of paleo-monsoon is also dealt with and a possibly imposed paleo-monsoon is suggested.展开更多
基金This research was supported by the National Key R&D Program of China (2017YFA0603802), the National Natural Science Foundation of China (41661144005 and 41320104007), and the CAS-PKU Joint Research Program. We would like to thanks the IPCC for providing the CMIP5 datasets (http://www.ipccdata.org/sim/gcm_monthly/AR5/Reference-Archive.html).
文摘In this study, the East Asian summer climate changes under the 1.5 ℃ global warming (1.5 GW) target in 30 simulations derived from 15 coupled models within the Coupled Model Intercomparison Program phase 5 (CMIP5) are examined. Compared with the current summer climate (1975-2005), both surface air temperature and precipitation increase significantly over the East Asian continent during the 1.5 GW period (average period 2021-2051). In northeastern China this is particularly pronounced with regional averaged precipitation increases of more than 7.2%, which is greater than that for the whole East Asian continent (approximately 4.2%). Due to stronger enhancement of precipitation north of 40°N, the leading empirical orthogonal function (EOF) mode of summer precipitation over the East Asian continent changes from tripolar-like mode to dipole mode. As there is stronger surface warming over the East Asian continent than that over surrounding ocean, the land-sea thermal contrast is enhanced during the 1.5 GW period. As a result, the monsoon circulation in the lower troposphere is significantly strengthened, which causes the increased summer precipitation over the East Asian continent. In addition, larger interannual variabilities of East Asian summer monsoon circulation and associated precipitation are also suggested for the 1.5 GW period.
基金Research supported by the National Key Program for Developing Basic Sciences(2006CB400506) of China Climate Change Study Fund of the China Meteorological Administration(CCSF2008-8)
文摘A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
基金Joint Project of Natural Science Foundation of China and Yunnan Province (U0833602)
文摘The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.
基金supported jointly by the National Basic Research Program of China (2010CB428603)and the National Natural Science Foundation of China (41230527 and 41025017)
文摘The pathway of the East Asian winter monsoon(EAWM) that usually leads to the out-of-phase pattern of surface air temperature between northern and southern East Asia is an important feature in the variability of the EAWM besides its strength.Using the European Centre for Medium-Range Weather Forecasts 40-year(ERA40) reanalysis dataset,this study investigates the pathway-related stationary wave activity to explore the mechanism of the interannual variations in the EAWM pathway.It reveals that when the southern pathway of the EAWM is strong,the phase of the climatological stationary wave tends to be shifted westward significantly in both the horizontal and vertical directions by an anomalous wavenumber 2 pattern at mid-latitudes,whereas the changes are relatively small in the subtropics.The horizontal changes in the stationary wave phase facilitate a north-south-oriented East Asian trough in the middle troposphere that eventually produces the strong southern pathway of the EAWM.The vertical changes in the stationary wave,in contrast,feature a westward-tilted phase line with height over the North Pacific,indicating enhanced upward propagation of waves into the stratosphere.This result suggests that the phase of stationary waves at mid-latitudes dominate the interannual variations in the EAWM pathway.Moreover,it supports our previous interpretation of the possible role of the North Pacific sea surface temperature(SST) in the EAWM pathway variability.It also implies that the excitation of anomalous mid-latitude stationary waves may be the key in the response of the EAWM pathway to the North Pacific SST.
基金Key Project of New technology by China Meteorological Administration (CMATG20092D02)China Public Science and Technology Special Research Projects of Meteorology (GYHY201006007,GYHY201006008,GYHY201006016)National Science and Technology Project (2009BAC51B03)
文摘In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China,interseasonal pentad characteristics of the EASWJ and their relation to summer precipitation in East China are analyzed with the daily reanalysis data provided by National Centers for Environmental Prediction (NCEP,USA) and daily precipitation data from 714 Chinese meteorological stations during the period 1960-2009.In addition,the daily evolution of the EASWJ and objective quantification of the EASWJ are investigated for the Meiyu season over the middle and lower reaches of the Yangtze River valley.It is found that the EASWJ and summer precipitation bands in East China move simultaneously.Especially,the stationary state and northward shift of the EASWJ are closely associated with the beginning,ending and stabilization of the annually first raining season in South China and Meiyu over these reaches.Analysis on the characteristics of the EASWJ in typical (atypical) Meiyu years over these reaches shows that the EASWJ swings steadily around its climatological position in meridional orientation (with large amplitude).Numerical experiments on an example in 2005 shows that indexes proposed in this study can depict the EASWJ well and should be valuable for application in the operation.
基金China-Japan intergovernmental cooperation program of the JICA (2009LASWZF04)Program of Ministry of Science and Technology of China (2009DFB20540)
文摘This study examines the wave trains at 500 hPa occurring in East Asian summer by using the Empirical Orthogonal Function (EOF) analysis as a diagnostic tool. The results are summarized as follows: (1) A wave train pattern (OKJ pattern) originating from the upstream areas of the Sea of Okhotsk to the subtropical regions could display its strong signal in early and middle summer. The OKJ pattern is clearly recognized in the first EOF component in Eurasia. (2) The other wave train pattern originating fi'om the Philippines via Japan to North America (the P-J pattern) shows quite strong signals in the whole summer. Although the P-J pattern is described as the second EOF component around the area from East Asia to Northeast Pacific Ocean, the variance contribution is the same as that of OKJ pattern in the first EOF component. (3) The composite analyses indicate that the OKJ and P-J wave trains could coexist to some extents.
基金National Program on Key Basic Research Project of China (973 Program) (2007CB411805 2010CB428505)National Natural Science Foundation of China (40830958)
文摘The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.The results show that anomalous SST warming in the Kuroshio Extension in winter causes the enhancement and northward movement of the EASM.The monsoon indexes for East Asian summer monsoon and land-sea thermal difference,which characterize the intensity of the EASM,show an obvious increase during the onset period of the EASM.Moreover,the land-sea thermal difference is more sensitive to warmer SST.Low-level southwesterly monsoon is clearly strengthened meanwhile westerly flows north (south) of the subtropical westerly jet axis are strengthened (weakened) in northern China,South China Sea,and the Western Pacific Ocean to the east of the Philippines.While there is an obvious decrease in precipitation over the Japanese archipelago and adjacent oceans and over the area from the south of the Yangtze River in eastern China to the Qinling Mountains in southern China,precipitation increases notably in northern China,the South China Sea,the East China Sea,the Yellow Sea,and the Western Pacific to the east of the Philippines.North China is the key area where the response of the EASM to the SST anomalous warming in the Kuroshio Extension is prominent.The surface air temperature shows a warming trend.The warming in the entire troposphere between 30oN and 50oN increases the land-sea thermal contrast,which plays an important role in the enhancement of the EASM.Atmospheric circulation and precipitation anomalies in China and its adjacent regions have a close relationship with the enhancement of the Western Pacific subtropical high and its northward extension.
文摘This article explains how modern European travelers, particularly European women adventurers, described East Asia. Travel writings that are expected to be truthful are not free from travelers' own personal, cultural, social, and political experiences and perceptions. At the turn of the 19th century, Europe was dominated by colonial discourse based on Western-centered textualized or imaginary knowledge of "the Orient''1. The imaginary texts affected European travelers. In turn, their travel writings helped substantiate and reinforce the texts. European women travelers, who were in a relatively disadvantageous situation at home, enjoyed going beyond the sexual boundaries imposed on them at home by using their assumed racial superiority in the Orient. However, their marginal position in Western society helped them ponder their own understanding of other peoples and cultures, of themselves, and of their home societies. This article traces not only the surface discourse of travelogues on East Asia, particularly on Korea, but also travel writers' inner worlds, focusing on differences between men and women.
基金supported by the Key Project of the Chinese Academy of Sciences(Grant Nos.KZCX2-SW-210 and KZCX2-203)the National Key Programme for Developing Basic Sciences(Grant No.G1998040904)the National Natural Science Foundation of China(Grant No.40105006).
文摘In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.
基金supported by the Chinese Academy of Sciences(Grant No.XDB18000000)the National Natural Science Foundation of China(Grant No.41688103)the State Oceanography Bureau(Grant No.GASI-GEOGE-02)
文摘The roles of subduction of the Pacific plate and the big mantle wedge(BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following.(1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe_2O_3~T and TiO_2 contents, HIMU-like trace element composition and relatively low ^(206)Pb/^(204)Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe_2O_3~T and TiO_2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1-and EM2-type components.(2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone,whereas EM1 and EM2 components are from the shallow mantle.(3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at <100 km and^300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H_2O and CO_2 decrease gradually from bottom to top of the BMW.(4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.
基金the National Natural Science Foundation of China (Grant No.49972055). We thank Dr. Hai Cheng at Isotope Laboratory of Geology and Geophysics Department, Minnesota University, USA for his measurement of TIMS-U series dating.
文摘A 400-mm-long stalagmite from Tangshan Cave, Nanjing has beenanalyzed by a high-precision TIMS-U series dating method and also determined for oxygen and carbon stable isotopic compositions. The results provided a high-resolution paleoclimate record for eastern China during a time interval (from 54 000 to 19 000 aBP) of the last glaciation. The continuous record of oxygen-18 variations in the stalagmite, indicating a precipitation history of the East Asian monsoon, shows not only signals of the Heinrich events, but also the Dansgaard-Oeschger cycles which are first found in the last glacial climate record of the East Asian monsoon area. Although the stalagmite-based climatic signals match well with the GRIP ice core record, some differences between the two re-cords can be recognized: (1) The last glacial climate changes in eastern China exhibited a long-term remarkably cooling trend, superimposed on which were four successive Bond’s cycles illus-trated by the δ18O curve. This strong cooling tendency may be an effect of the strong summer mon-soon event during the MIS 3 over the Tibetan Plateau. (2) There exist some phase differences of 1000—2000 years between the cooling events in the stalagmite-based climate signal and the GRIP ice core record. Such differences should be further verified by calibrations of multiple dating meth-ods.
基金the National Natural Science Foundation of China (Grant Nos. 49725206, 4897176) and the Key Project of the Chinese Academy of Sciences (KZCX2-108).
文摘The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon. In this study, 2181 samples from the Changwu and Xifeng loess sections are analyzed and two high-resolution paleo-weathering timeseries of the last 1.2 Ma are generated, using the ratio of CBD extractable free Fe2O3 (FeD) versus the total iron (FeT). This new index is compared with micromorphological features, low-frequency magnetic susceptibility, frequency-dependent magnetic susceptibility, and the Rb/Sr ratio[5,6]. The results suggest that the FeD/FeT ratio is able to better reflect the degree of soil development. Since the chemical weather-ing of loess in the Loess Plateau region mainly depends upon the summer precipitation and tem-perature under modern climate condition, which are closely associated with strength of summer monsoon, and the chemical weathering intensity of loess primarily reflects the variations of the summer monsoon circulation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41505043 & 41372180)
文摘A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.
基金the National Natural Science Foundation of China (Grant No. 49572113).
文摘The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GCA before the uplift of the plateau is lack of direct evidences. Based on the knowability of desert, a section recording wind directions across the Cretaceous northern hemisphere mid-low latitude desert belt is measured and the pattern of the GCA in the Cretaceous is revealed. The result shows that the eastern Asia was really controlled by the planetary circulation before the uplift of the plateau, i.e. westerlies in the north and northeast trades in the south. The convert belt between westerlies and trades had drifted northwards and southwards. The possibility of existence of paleo-monsoon is also dealt with and a possibly imposed paleo-monsoon is suggested.