基于1979—2020年5—8月欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代全球大气再分析产品——ERA5逐日数据计算了3个度量陆气耦合强度的指数,分析了亚洲东部和南部区域陆气耦合的气候态特征...基于1979—2020年5—8月欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代全球大气再分析产品——ERA5逐日数据计算了3个度量陆气耦合强度的指数,分析了亚洲东部和南部区域陆气耦合的气候态特征及其在不同土壤干湿条件下的差异。结果表明,从气候态看,华北-东北、青藏高原、印度、中国云南-东南亚和中纬度干旱带为较强陆气耦合区。在华北-东北、青藏高原、印度、中国云南-东南亚地区,土壤越干,陆气耦合强度越大,这种因土壤湿度不同而导致的耦合强度的显著差异,存在于从土壤湿度到蒸散发,再从蒸散发到边界层水汽和不稳定度的各耦合过程中,产生这种差异的主要原因是上述区域土壤湿度变率较大。而在中纬度干旱带,由于土壤湿度值及其变率均很小,耦合强度随土壤干湿条件变化无明显差异。华南为弱陆气耦合区,只有土壤偏干时,土壤湿度和蒸散发之间才能发生显著耦合,而蒸散发和边界层在所有土壤干湿条件下均不发生显著耦合。展开更多
文摘基于1979—2020年5—8月欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代全球大气再分析产品——ERA5逐日数据计算了3个度量陆气耦合强度的指数,分析了亚洲东部和南部区域陆气耦合的气候态特征及其在不同土壤干湿条件下的差异。结果表明,从气候态看,华北-东北、青藏高原、印度、中国云南-东南亚和中纬度干旱带为较强陆气耦合区。在华北-东北、青藏高原、印度、中国云南-东南亚地区,土壤越干,陆气耦合强度越大,这种因土壤湿度不同而导致的耦合强度的显著差异,存在于从土壤湿度到蒸散发,再从蒸散发到边界层水汽和不稳定度的各耦合过程中,产生这种差异的主要原因是上述区域土壤湿度变率较大。而在中纬度干旱带,由于土壤湿度值及其变率均很小,耦合强度随土壤干湿条件变化无明显差异。华南为弱陆气耦合区,只有土壤偏干时,土壤湿度和蒸散发之间才能发生显著耦合,而蒸散发和边界层在所有土壤干湿条件下均不发生显著耦合。